
SCTA Tracer: A Distributed Environment for
Standardized Awareness Support Assessments

Christoph Oemig, Tom Gross
Human-Computer Interaction Group

University of Bamberg
96047 Bamberg, Germany

c.oemig(at)acm.org, tom.gross(at)uni-bamberg.de

Abstract

Awareness support in cooperative environments has

been a research issue in the area of distributed systems
for computer-supported cooperative work for more
than two decades. Measuring its effectiveness remains
a complex task since it is difficult to grasp awareness
in situ. Consequently, techniques and tools are
required generating results while a user’s awareness is
still present. The Standardized Coordination Task
Assessment (SCTA) and its tool the SCTA Tracer use
freeze probes to query participants at specific points in
time while working on a common task measuring and
recording response times, performance, and errors.
The result is visualized in a four quadrant system
distinguishing illusive, ineffective, inefficient, and ideal
systems. The SCTA Tracer guides awareness support
researchers and designers to focus their effort on
essential concepts already at early development stages.
This paper shows how a smart selection of tools and
techniques is integrated for this complex task.

1. Introduction

Awareness and awareness support in cooperative
environments have been a research issue in the area of
distributed systems for computer-supported
cooperative work for more than two decades.
Basically, awareness in this context means that the
distributed members of a team get information about
each other and each others’ activities as well as
relevant changes to shared workspaces and artefacts.

Studies and prototypes (e.g., group editors [1])
showed its positive effects on coordination in work
groups. Over the time, many facets of awareness have
been identified [2]. Yet, measuring the effectiveness of
awareness support has remained a complex task—as it
is to evaluate cooperative systems in general [3].
Although there are many individual approaches and

methods, the lack of standard tools urges researchers to
create their own. The result: specialized one-purpose
tools, approaches and history repeating itself with next
research effort.

In this paper we present an awareness assessment
approach providing a generic tool to be used across our
various research projects, especially those dealing with
the development of awareness support systems. Taking
a closer look at awareness itself reveals two major
challenges: Awareness is ephemeral by nature and it is
a secondary task. The first deals with the issue of
memory: People tend to forget quickly. As one of the
first, Hermann Ebbinghaus discovered and documented
the exponential nature of forgetting [4] describing the
decline of memory retention over time. Consequently,
there is only limited time to measure awareness in
order to judge on the effectiveness of an awareness
support system. Therefore, we seek to measure
awareness when it is still present—even in distributed
settings. The second challenge addresses the fact that
awareness itself is a by-product and that another
process or task is needed for its creation. Many
existing methods and tools disregard at least one of the
two challenges. Reasons are wrong measurement
timing, the absence of users, the high degree of user
disruption, or tremendous preparation effort and cost
due to very complex setups.

All of the above led us to develop the Standardized
Coordination Task Assessment (SCTA), which
analyses and categorizes an awareness support’s
effectiveness among the categories illusive, ineffective,
inefficient, and ideal (4I). We implemented these ideas
in our software tool SCTA Tracer, which can be used
in collocated and distributed setups.

In the following, we briefly introduce its concept,
features and application. Then we take a look at the
implementation and selected technical details. Finally,
we discuss early findings and point out future work.

2. Concept

2.1. Methodology

Since its initial publication in [5] the Standardized
Coordination Task Assessment (SCTA-4I) grounds on
the hypothesis that if somebody is aware of something,
then s/he can answer questions about it quickly and
without error. It consists of a standardized (primary)
task and a measurement approach (for the secondary)
that eventually yields a result depictable in the 4I
(illusive, ineffective, inefficient, ideal) diagram. The
task itself is simple and merely involves the counting
of letters. Thus we achieved low preparation and setup
cost/effort using a random string generator while
ensuring a comparable quality and workload for the
assessments. It has its roots in the research concerned
with subliminal messages [6] where the counting of Bs
is used as primary task. However, our approach not
only contains Bs but all letters of the alphabet in upper
and lower case.

The randomly ordered letters are counted by a team
of at least two people who may be collocated or
spatially separated. This is where the coordination
effort comes into play. The counting activity and
coordination creates the mental load to be measured. A
configurable number of freeze probes (i.e., the halt of
the task, blanking the screens and then probing the
subjects for a short period of time) are used to capture
awareness when it is still present. Quick questions
(e.g., “Who counted Cs?”, “How many Ds?”, “Were Es
counted?”, “Which of the following letters did your
partner count?”) concerning the counting task are used
while measuring response times. Additionally, the
number of errors in relation to the number of questions
(error rate) is determined. However, an answer being
correct is defined as what the user counted and recalls
to be counted—not the actual number of letters.

In general, quick response times and low error rates
are desirable indicating reasonable awareness support.
Opposed to former versions response time/forgetting
time ratio and error rate make up the x- and y-axis in
our (4I-) visualization. Currently, the x-axis expresses
how much of the time that it takes to loose awareness
information has passed. 100% of the x-axis means that
awareness information is lost. Besides the above
measures, the overall performance and the number or
coordination errors are recorded. The number of
different letters counted indicates a team’s
performance. Coordination errors occur for instance
when team members count the same letters. Again,
high performance and a low coordination error rate are
desirable and indicate reasonable awareness support.

The SCTA-4I is organized in runs, sessions, and
traces:

• Assessment run: a single counting task with a
configured duration where the four measures are
recorded with a set of users. A run is interrupted by a
configurable number of freeze probes.

• Assessment session: a set of assessment runs
whose measures are aggregated to session level.
Session results are depicted in the 4I diagram.

• Assessment trace: a trace shows the
evolutionary path of the awareness support system
under test. It consists of a sequence of assessment
sessions.

The 4I-diagram is divided into four quadrants (cf.
Figure 1). Each quadrant has a label according to the
contained system type. Quadrant I contains systems
with high error rates and low response time/forgetting
time ratios since users present wrong answers quickly
indicating illusive systems. Quadrant II encompasses
systems with high error rates and high response
time/forgetting time ratio indicating ineffective
systems since users cannot answer questions correctly
even after thinking longer. Quadrant III contains
systems with high response time/forgetting time ratios
but low error rates where users appear to need some
time for thinking but finally come up with correct
answers. Quadrant IV has correct answers provided
quickly which is the characteristic of ideal systems. In
our current visualization assessment sessions are

Figure 1. SCTA Tracer showing a 4I diagram.

depicted as circles as opposed to former versions.
These circles indicate the coordination error rate. A
circle’s radius conveys the team’s performance (letters
counted/configured duration). Reasons for the changes
were the comprehension of the diagram and
implementation issues. Further changes to prior
versions are the use of configuration values more
extensively allowing easy adaptations (e.g., using a
different number of freeze probes or questions per
freeze probe).

2.2. General Procedure & Evaluation

The first user to log in becomes the administrator of
the software. S/he may choose loading an existing trace
file or generating a new one identified by a trace name.
Next, the administrator selects an existing assessment
session or creates a new one identified by a session
name. Finally, the administration screen opens where
the administrator finds an overview of users logged in
and where s/he is able to start a new assessment run.
Additional tabs contain the trace’s evaluation (4I
diagram) and the software’s configuration. Further
users become regular participants of the next
assessment run and get to see a wait screen. The wait
screen switches to the document screen where the
counting takes place when the administrator starts the
assessment run. A count down appears prior the switch
synchronizing the participants’ counting tasks.
Additionally, it collects the counting results (e.g.,
Bs=35) at the lower portion of the screen, which is
recorded (later referred to as count data). These are
needed to determine the freeze probe results. The
counting task in the document screen is interrupted at
configured points in time by freeze probes which
switch from document screen to freeze probe screen
asking the user about the overall counting activity.
User, result, and response time are recorded for each
answer (later referred to as response data). Afterwards
the freeze probe screen switches back to the document
screen. When the assessment run’s configured time
elapsed the application switches to the Thank-you
screen from which the user may return to the initial
wait screen for another assessment run.

As already mentioned the administration user
interface contains an evaluation tab. This tab offers a
button named “Run Evaluation” which is only enabled
when there are no assessment runs active. Pressing the
button launches the computation of the four already
introduced measures per assessment session:
• Average response time/forgetting time ratio:

defined as the arithmetic mean of all response times
of all runs belonging to one session in relation to
the configured forgetting time. It is derived from
the response data:

{ } srr
timeforgetting

timeresponse
nx n

n

r
r

∈=
∑
= …1
1 ,

1
 (1)

• Error rate: defined as the quotient of the total

number of incorrect answer of all runs belonging to
one session divided by the total number of all
answers of all runs belonging to the same session.
It is derived from the response data:

{ } srr
correctincorrect

incorrect
y nn

r
rr

n

r
r

∈
+

=

∑

∑

=

= …1

1

1 ,
)(

 (2)

• Coordination error rate: defined as the arithmetic

mean of the number of multiple counts of the same
letter by different users divided by the number of
all letters counted per run. It derived from the count
data:

{ } srr
count
countmulti

n
c n

n

r r

r ∈= ∑
=

…1
1

,1 (3)

• Performance: defined as the arithmetic mean of

the number of letters counted per run divided by the
configured assessment run time. It is derived from
the count data and configuration:

{ } srr
durationrun

count
nr n

n

r
r

∈=
∑
= …1
1 ,

1
 (4)

Thus, a session s can be described as s=(x,y,c,r). The
first two become its x- and y-coordinates in the
diagram; c is the colour and r the radius of the circle to
be plotted for the session in the 4I-diagram.

3. Implementation

3.1. Architecture

The SCTA Tracer was developed using the Java
programming language [7]. Its overall architecture
works according to the mediator pattern [8]. It belongs
to the object-based behavioural patterns. In this pattern
a central controlling instance, the mediator, promotes
loose coupling by keeping the collaborating objects
(called colleagues) from referring to each other
directly. The mediator controls and coordinates
interaction and represents the software’s overall
behaviour. Colleagues obtain a reference of the
mediator from a central registry. The mediator is
responsible for sending/receiving information to/from
the respective colleagues.

We defined two interfaces named
ISCTATracerMediator and ISCTATracerColleague.
Since we use Java’s Remote Method Invocation (RMI)
to allow the distributed use of the software, the two
interfaces are Java Remote interfaces at the same time.
At start-up the first main() method creates an
ISCTATracerMediator instance of the remote object
implementation (the stub) and tries to bind that
instance to the name SCTATracerMediator in a Java
RMI registry. When registered successfully, this
instance launches the administration screen. Further
instances try to do the same, but their registration as
SCTATracerMediator will fail, due to an already
registered instance. Therefore, these further instances
will create objects of the ISCTATracerColleague
interface. These colleague instances obtain a mediator
reference using a RMI registry lookup. Now they are
able to use the mediator’s register() method to place
their remote interface references there. Thus, the setup
of the mediator pattern is complete. In the following
the colleague instances setup the wait screen for their
users. The mediator controls the colleagues using the
ISCTATracerColleague interface—for instance, when
the assessment run starts, questions of the freeze
probes are to be shown, or when the assessment run is
over. The colleagues use the ISCTATracerMediator
interface to (un-)register for assessment runs, to send
counting results, and to answer freeze probe questions.

3.2. Charts

Pushing the button “Run Evaluation” on the

evaluation tab creates a 4I-diagram using an extended
version of JFreeChart [9]. It is an open-source Java
framework allowing the creation of complex charts of
various types like XY charts (line, spline and scatter),
pie charts, Gantt charts, and bar charts (horizontal and
vertical, stacked and independent). Besides the creation
of charts, JFreeChart allows the placement of various
markers inside the resulting diagrams. However, in the
case of our 4I-diagram we needed to create our own
custom chart to regard our four aforementioned
measures. Fortunately, JFreeChart proved to be easily
extensible for this situation also due to the availability
of its source code. Error rate and response
time/forgetting time ratio are used as standard x- and y-
coordinates. However, our need to influence an item’s
diameter and colour by the values of performance and
coordination error rate required customization.
Additionally, we needed an individual label for each
item of a series to be shown while standard JFreeChart
allows only labels per series (which correspond to an
assessment trace; a series item corresponds to an
assessment run). First, we needed to define a new
dataset type that is able to contain all four measures per

item (i.e., a 4-tuple, or quadruple) in addition to a
session label. This dataset, named SCTADataset,
extends JFreeChart’s XYDataset. In order to deliver
the data on screen we also needed to define a custom
renderer that displays the dataset’s content as 4I-
diagram. Our SCTARenderer extends JFreeChart’s
XYLineAndShapeRenderer class to do the job. The
generation of proper labels required a customized
SCTAItemLabelGenerator. The JFreeChart object is
finally added to a standard Java Swing container.

3.3. Persistence

For persistence a lightweight approach known as
XML data binding was chosen. This allows accessing
XML data using objects rather than using DOM or
SAX. The Java Architecture for XML Binding (JAXB)
allows mapping Java classes to XML representations.
It provides two main features: the ability to marshal
Java objects into XML and the inverse, that is to
unmarshal XML back into Java objects JAXB allows
storing and retrieving data in memory in any XML
format, without the need to implement a specific set of
XML loading and saving operations. JAXB is a part of
Java SE platform [7].

As a first step we defined our storage format as
XML schema. We planned to use one XML file per
assessment trace. Therefore it became our top-level
element. It only has a name attribute. A trace element
may contain multiple session elements, which also
have a name attribute. The session element may
contain multiple run elements. A run element holds the
information about the participating users, counting
information and response data from the freeze probes.

The binding compiler xjc is used to generate a set of
Java classes that represent the schema. These classes
are filled by the application with the data collected.
When the administrator chooses to save the current
status of the trace then this data structure with its top
element class Trace is handed over to the Marshaller
object to create the XML file. On the other hand, at
application start-up an existing XML file can be
chosen from which the Unmarshaller object creates a
data structure to be used by the application.

4. Discussion/Conclusions

The concept SCTA-4I and its tool, the SCTA
Tracer, are lightweight and universally usable since
they are independent of a specific awareness model
and of a specific primary task. The setup of the task is
straight forward allowing heavy (re–)use at very low
preparation cost. Additionally, researchers are relieved
from reading log files or analyzing interview data,

since the evaluation comes with the push of a button. It
allows to be used in colocated and distributed settings.
Opposed to questionnaires it delivers quantitative data
and a visualization that helps to guide further
development steps. It uses freeze probes to capture
awareness when its still present and introduces a
simple primary task. Some of the issues of prior
versions were already resolved. The former response
time (x-axis) was replaced by the response
time/forgetting time ratio thus providing a fixed frame
for all sessions of the trace inside the diagram. In
earlier versions, the session with the highest response
time was drawn at the right border of the chart, which
caused misleading interpretations of the diagram. Now,
x- and y-axis both use ratios The formerly rather fixed
parameters became adjustable and moved to the
configuration, where they can be adapted also in order
to experiment with the setting itself.

But there are still difficulties: as an experimental
simulation it lacks the situatedness often needed in
CSCW application assessment [10]. However, we
think that this situatedness is not exactly needed at
these early stages of development. We suggest using
our tool in addition to tests and experiments in situated
settings. Another major drawback is that the user has to
enter the counting results in the document screen. This
is needed in order to generate the questions for the
freeze probes and to check the answers. There is not
really an alternate way to get hold of these counting
results. One can argue that this belongs to the primary
task as there also arguments that it does to the
secondary.

There is future work on both the conceptual and the
technical side: The SCTA-4I currently focuses on the
coordination activity during the task. Future versions
should include other areas of awareness information
like location or presence. Additionally, we are eager to
see if there are typical trace patterns and how 4I-
diagrams of smaller teams relate to 4I- diagrams of
larger teams using the same system under test. From a
technical point of view we would like to extend our
software with the Java Webstart technology that allows
installing and launching it using a standard web
browser. Via our website we could then provide the
tool in the latest version to every researcher interested.

Acknowledgment

We like to thank all people participating in the initial
setup of the assessment and all reviewers for their
valuable comments and suggestions on earlier versions
of this work.

5. References

[1] Dourish, P., Bellotti, V., Awareness and Coordination

in Shared Workspaces. In Proceedings of the
Conference on Computer-Supported Cooperative Work
- CSCW'92 (Oct. 31-Nov. 4, Toronto, Canada). ACM,
N.Y., 1992, pp. 107-114.

[2] Gross, T., Stary, C., Totter, A., User-Centered

Awareness in Computer-Supported Cooperative Work-
Systems: Structured Embedding of Findings from
Social Sciences. International Journal of Human-
Computer Interaction 18, 3, 2005, pp. 323-360.

[3] Grudin, J., Why CSCW Applications fail: Problems in

the Design and Evaluation of Organisational Interfaces.
In Proceedings of the Conference on Computer-
Supported Cooperative Work - CSCW'88 (Sept. 26-28,
Portland, OR). ACM, N.Y., 1988, pp. 85-93.

[4] Ebbinghaus, H., Memory: A contribution to

experimental psychology. New York: Dover, 1885.

[5] Oemig, C., Gross, T. Illusive, Ineffective, Inefficient,

Ideal: Standardized Coordination Task Assessments of
Awareness Support. , in press.

[6] Karremans, J. C., Stroebe, W., Claus, J., Beyond

Vicary's fantasies: The impact of subliminal priming
and brand choice. Journal of Experimental Social
Psychology, 42, 2006, pp. 792-798.

[7] Oracle Technology Network. J2SE 6.0.

http://www.oracle.com/technetwork/java/index.html,
2011. (Accessed 2/8/2011).

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, 1994.

[9] JFreeChart. http://www.jfree.org/jfreechart/, 2011.

(Accessed 5/7/2011)

[10] Twidale, M., Randall, D., Bentley, R., Situated

evaluation for cooperative systems. In Proceedings of
the 1994 ACM Conference on Computer Supported
Cooperative Work (Oct. 22-26, Chapel Hill, North
Carolina, United States). ACM, N.Y., 1994, pp.441-
452.

