
G. Meiselwitz (Ed.): SCSM/HCII 2014, LNCS 8531, pp. 25–36, 2014. 
© Springer International Publishing Switzerland 2014 

Social Computing—Bridging the Gap  
between the Social and the Technical  

Christoph Beckmann and Tom Gross  

Human-Computer Interaction Group, University of Bamberg, Germany  
christoph.beckmann@uni-bamberg.de  

Abstract. Developing cooperative systems and social media requires taking 
complex decisions concerning the social interaction to be supported as well as 
the technical foundation. In this paper we build on the long and successful tradi-
tion of design patterns and the social framework of Erving Goffman. We pre-
sent design patterns that address both challenges of social interaction and tech-
nical foundation—they provide input for software developers with respect to 
structuring software and to providing adequate support for the interaction of us-
ers with the environment and with each other.  

Keywords: Social Computing, Software Design, Cooperative Systems, Social 
Media. 

1 Introduction  

In social computing, systems aim at facilitating communication and cooperation 
among users who are either at the same location or at different locations. Social media 
summarises concepts and systems that aim at an active participation of users during 
an interaction, easy exchange of information, and sophisticated self-presentation [11].  

Developing concepts for those systems is a challenging task and has been re-
searched for more than two decades [12] [7]. They often have a strong influence on 
the structure and flow of the interaction in the group, as Schmidt [18, p. vii] explains: 
‘the development of computing technologies have from the very beginning been 
tightly interwoven with the development of cooperative work’. And he [18, p. vii] 
continues: ‘our understanding of the coordinative practices, for which these coordina-
tion technologies are being developed, is quite deficient, leaving systems designers 
and software engineers to base their system designs on rudimentary technologies. The 
result is that these vitally important systems, though technically sound, typically are 
experienced as cumbersome, inefficient, rigid, crude’.  

Patterns have a long and successful tradition for drafting, for documenting, and for 
reusing the underlying concepts. Very prominently, Christopher Alexander has sug-
gested and provided design patterns in architecture [2]. He introduced a pattern lan-
guage to describe solutions that were repeatedly applied to reoccurring challenges in 
the design of buildings. In software engineering software design patterns have been 
successfully used for documenting and reusing knowledge and provided a ‘way of 



26 C. Beckmann and T. Gross 

supporting object-oriented design’ [20, p. 422]. With respect to social computing, 
design patterns can document the knowledge and experience with developing coop-
erative technology.  

All these different types of design patterns provide valuable input for cooperative 
systems and social media. However, there are also limiting factors: software design 
patterns primarily help structuring software, and cooperative design patterns are pri-
marily based on the analysis of existing cooperative systems or on some specific eth-
nographic studies. Therefore, the gap is that the complex task of making both types of 
patterns compatible is in the hands of software designers and developers. 

In this paper we build on the history of patterns and present overarching design 
patterns for social computing systems. For this purpose we leverage on the works of 
Erving Goffman who studied social interaction among humans and their use of their 
technical environment for several decades and derived a framework for social interac-
tion. He uses a metaphor of a performance where everybody is an actor that present 
her- or himself and acts with others.  

In the next section we provide a background of patterns. We then introduce the 
framework of social interaction of Erving Goffman. We discuss how this framework 
informs the design of cooperative systems and we derive design patterns for coopera-
tive systems that are modelled in a unified modelling language format for software 
designers and developers. Finally, we summarise our contribution.  

2 Background of Design Pattern 

Christopher Alexander et al. [3] were the first to systematically distil patterns from 
reoccurring solutions to reoccurring problems. In the domain of architecture they 
identified a language of connected patterns for designing buildings. In this section we 
introduce patterns related to the design of software in general as well as for coopera-
tive systems and social media in particular that build of Alexander et al.  

2.1 Software Design Patterns 

Software designers and developers widely use software design patterns. Gamma, 
Helm, Johnson and Vlissides [5] suggested the most notable pattern language for 
object-oriented software development. They characterise a pattern as a composition of 
a problem that during the development frequently occurs, a principal solution to the 
problem, and consequences from applying the solution. Their pattern language in-
cludes 23 patterns for classes (i.e., static relationships during compile-time) and ob-
jects (i.e., dynamic relationships during run-time) in three categories: creational, 
structural, and behavioural patterns [21].  

Cooperative systems and social media use network-based and distributed software 
architectures in the background. POSA2 offers a rather technical pattern language 
addressing the challenges of distributed software architectures especially in the con-
text of object-oriented middleware such as CORBA, COM+, or Jini [17]. It has four 
categories representing the main challenges of object-oriented middleware: ‘Service 



 Social Computing—Bridging the Gap between the Social and the Technical 27 

Access and Configuration’, ‘Event Handling’, ‘Concurrency’, and ‘Synchronisation’. 
The description of patterns is extensive and contains precise design implication for 
the named middleware along verbose source code examples.  

While software design patterns are substantial for sustainable software develop-
ment, they still leave the burden of the complexity of social interactions to software 
designers and developers of cooperative systems.  

2.2 Design Patterns for Cooperative Systems and Social Media  

Design patterns for cooperative systems and social media typically focus on human 
behaviour and interaction. We describe patterns that support designers and developers 
of cooperative systems and social media.  

A pattern language for computer-mediated interaction condenses features and 
properties of existing cooperative systems [19]. It has three categories: ‘community 
support’, ‘group support’, and ‘base technology’. The variety of patterns reaches from 
simple ones (e.g., the ‘login pattern’ allows users to interact within a system as indi-
viduals with an associated user accounts) to complex ones (e.g., the ‘remote field of 
vision pattern’ allows users, which work remotely on shared artefacts to be aware of 
at which parts others are currently watching at). The description of patterns is very 
detailed and considers caveats as well as implications for security. 

Specific patterns for privacy and sharing provide solutions to problems concerning 
the quality of use of cooperative systems [4]. They result from field studies, notes, and 
design sketches that were translated into three patterns: The ‘workspace with privacy 
gradient’, the ‘combination of personal and shared devices’, and the ‘drop connector’.  

Descriptive patterns have been suggested to allows a better facilitation of the 
communication in interdisciplinary design teams during the development process [13, 
14]. They are comprehensive and express ‘generally recurrent phenomena’ extracted 
from ethnographic studies at workplaces. The resulting descriptive pattern language 
consists of six patterns: ‘multiple representations of information’, ‘artefact as an audit 
trail’, ‘use of a public artefact’, ‘accounting for an unseen artefact’, ‘working with 
interruptions’, and ‘forms of co-located teamwork’. Their patterns are extracted from 
fieldwork results using two types of properties: ‘spatially-oriented features’ and 
‘work-oriented features’. Their patterns can be extended with a ‘vignette’, which de-
scribes real examples as special use cases and provide further design implications.  

Despite the fact that patterns for cooperative systems and social media provide de-
tailed insights into practices and requirements of users working together, they mostly 
lack the dynamic notion of such systems, where users can take advantage of a 
throughout personalisation of their environment.  

3 Goffman’s Framework of Social Interaction  

We introduce the background and major concepts of Goffman’s framework of social 
interaction that are relevant for designers and developers of cooperative systems. 
 



28 C. Beckmann and T. Gross 

 

Fig. 1. Major Concepts in Goffman’s framework of social interaction 

Goffman [6] studied social interaction among humans for several decades and devel-
oped a conceptual framework of social interaction among humans in face-to-face 
situations. It is based on his own observations, on observations of other researchers, 
and on informal sources. In the following, we describe Goffman’s framework in three 
categories: participants, regions, and performance (cf. Fig. 1).  

3.1 Participants  

Participants act according to their social status (i.e., socio-economic standing in the 
society). They present a routine (i.e., a ‘pre-established pattern of action which is 
unfolded during a performance’ [6, p. 16]). For Goffman humans follow two types of 
ideals when interacting with each other: the optimistic ideal of full harmony, which 
according to Goffman is hard to achieve; and the pragmatic ideal as a projection that 
should be in accordance with reality and that others can accept—at least temporar-
ily—without showing deep and inner feelings of the self.  

In a performance a performer and an audience are involved. A performer defines a 
situation through a projection of reality as expressions of a character bound to a cer-
tain social role in front of an audience. Performers anticipate their audience and con-
tinuously adapt their performance according to its responses. Goffman distinguished 
three audience types. The present audience attends the performance, receives expres-
sions, verifies them according to the projected situation, and responds. The unseen 
audience is imaginary and used to anticipate a performance. The week audience is 
real, but not present. It constitutes of other performers giving similar performances. In 
preparation of a performance, a performer can exchange experiences and responses 
with the weak audience to improve her own ability to be convincing.  

Goffman describes the collaboration of performers as a ‘performance team’. Its 
members ideally fit together as a whole in presenting similar individual performances 
to amplify a desired projection, or in presenting dissimilar performances that com-
plement to a joint projection.  



 Social Computing—Bridging the Gap between the Social and the Technical 29 

3.2 Regions 

Regions are spatial arrangements used for performances and include specific media 
for communication as well as boundaries for perception. Goffman names three types 
of regions: stage, backstage, and outside. A stage provides a setting for the actual 
performance and is embroidered with decorative properties (i.e., decorum). It supports 
performers in fostering a situation. Both the performers, as well as the audience can 
access the stage, having different perspectives. The backstage is a region that per-
formers can access to prepare and evaluate their performance. Also team members 
suspend backstage. The audience cannot access the backstage. The outside region 
describes the third type that is neither stage nor backstage. Although it will be ex-
cluded from a performance, performers will prepare and use a dedicated front for the 
outside (e.g., the façade of buildings of a company). 

3.3 Performance  

For Goffman a performance means social interaction as a finite cycle of expressions 
to define a situation and of responses as feedback of validity. A performance takes 
place in a region of type stage. For a performance, each performer prepares a set of 
fronts, which represents her towards the audience. A front unites material and imma-
terial parts. Sign equipment is a front’s material part and denotes to all properties 
required to give a convincing performance. The personal front is a front’s immaterial 
part and denotes to certain types of behaviour of a performer (e.g., speech patterns). It 
combines ‘appearance’ (i.e., presenting a performer’s social status) and ‘manner’ (i.e., 
presenting a performer’s interactional role).  

Characters make the appearance of performers on the stage. A character—as a fig-
ure—is composed of a ‘front’, which is specifically adapted to the audience and per-
formance. In a performance team, the team as whole has a united front (e.g., accord-
ing to a professional status) and each member has a character with an associated front 
to invoke during staging. During a performance a character plays routines to convey 
acceptable and to conceal inacceptable expressions. In a performance team multiple 
characters will follow this behaviour.  

Expressions are information that is communicated by a character using ‘sign-
vehicles’ (i.e., information carriers). There are wanted expressions that are acceptable 
and foster a situation as a valid projection of reality, and unwanted expressions that 
are inacceptable and inappropriate for a given performance in front of a particular 
audience. In order to manifest a performance that is coherent, a performer strives to 
communicate expressions consistently through their characters towards an audience. 
Thus a performer’s character endeavours to conceal unwanted expressions.  

Responses are all kinds of feedback. An audience continuously verifies the per-
formance according to the defined situation and the overall reality as well as to the 
front of the character. It responds the result to the performer.  

In order to manifest a valid performance, performer and audience agree on three 
principal constructs that prevent a false or doubtful projection of reality based on 
contradictive expressions or discrediting actions: The ‘Working Consensus’ is an 
agreement on the definition of the situation and describes a temporal value system 



30 C. Beckmann and T. Gross 

among all participants. The ‘Reciprocity’ means that performers guise their characters 
to act according to the situation (i.e., provoke neither intentionally nor factually  
misunderstandings) and that the audience responds to performance according to the 
situation (i.e., allege neither consciously nor unconsciously false behaviour). The 
‘Interactional Modus Vivendi’ describes that an individual in the audience only re-
sponds to expressions that are important for the individual; the individual in the audi-
ence remains silent in things that are only important to others. 

Goffman describes additional participants. For instance, the team support, which is 
one of the following: colleagues that constitute the weak audience, training specialists 
that build up a desirable performance, service specialists that maintain a performance, 
confidants that listen to a performer’s sins, or renegades that preserve a idealistic 
moral stand that a performer or team failed to keep. Goffman also defines outsiders as 
being neither performers nor audience having little or no knowledge of the perform-
ance. They can access the type outside region. 

4 Informing the Design of Social Computing  

In this section we transform Goffman’s framework into design patterns. We used 
three steps. We first identified key statements of Goffman’s framework concerning 
structural aspects (i.e., social entities involved into interactions) and dynamic aspects 
(i.e., actions of and interactions between social entities). In a second step, we aug-
mented these aspects with literature reviews and lessons learned from conceptualising 
and developing cooperative systems—especially concerning the transition from 
physically co-present humans to virtually co-present humans (e.g., [8, 9]). In a third 
step, we iteratively derived four design patterns for cooperative systems and modelled 
them in the unified modelling language (UML version 2.4 [16]).  

4.1 Structure of Social Computing 

The structure of social computing systems refers to entities and their relations as  
essential ingredients. Our UML class diagrams emphasise entities involved, their 
compositions, and their dependencies. We use interfaces for modelling general entity 
behaviour that can be applied to a variety of instances. We use abstract classes for 
modelling entities that share implementations, and we use standard classes for model-
ling specific entities.  

The first structural pattern we introduce is the Social Entity Pattern (cf. Fig. 2). It 
describes the general setting of people involved in an interaction and their roles. The 
interface SocialEntities refers to humans that are explicitly included in an interaction. 
A social entity has general knowledge of the world and specific knowledge of particu-
lar domains. It relies on Routines as ‘pre-established pattern of action […] which may 
be presented or played…’ [6, p. 16]. It conveys information it likes to share with  
others, and conceals information it likes to hide from others. There are four classes 
implementing the interface SocialEntity: ActiveIndividuals, ActiveTeams, PassiveIn-
dividuals, and PassiveTeams.  



 Social Computing—Bridging the Gap between the Social and the Technical 31 

 

Fig. 2. Social Entity Pattern as UML class diagram 

ActiveIndividuals refer to Goffman’s performers and are instances of classes with a 
repertoire of Faces. They anticipate the behaviours of others and select as well as fit 
their faces towards them. An ActiveTeam consists of at least two ActiveIndividuals: 
which refers to ‘any set of individuals who cooperate in staging a single routine’ and 
‘…an emergent team impression arises which can conveniently be treated as a fact in 
its own right…’ [6, p. 79]. Teams have an overall goal. As noted above members of a 
team can have in individual activity or a shared activity. Since the delegation of an 
ActiveTeam’s members can vary from team to team, it is the responsibility of ex-
tended classes to implement that behaviour. An ActiveIndividual and ActiveTeam can 
rely on their Support (i.e., social entities that provide services or feedback). 

PassiveIndividuals as an abstract class implements the interface social entity with 
the ability to observe an action. Further implementations of such passive individuals 
are the PassiveTeam, which refers to the audience that participates in the interaction. 
About the relationship of active individuals and passive individuals Goffman states: 
‘…the part one individual plays is tailored to the parts played by the others present, 
and yet these others also constitute the audience’ [6, p. xi]. Parallel to the team above 
a PassiveTeam is an aggregation of PassiveIndividuals; Goffman writes: ‘There will 
be a team of persons whose activity … in conjunction with available props will con-
stitute the scene from which the performed character’s self will emerge, and another 
team, the audience.’ [6, p. 253].  

In the pattern a Face class lays out the foundation for a distinct configuration of an 
active individual or team as a prototype to be applied in an interaction. Our notion of 
a face refers to Goffman’s front; it is the ‘part of the individual’s performance which 
regularly functions in a general and fixed fashion to define the situation for those who 
observe the performance’ [6, p. 22]. An ActiveIndividual can have multiple faces as a 
repository of communication methods and properties towards passive individuals. 
Since, in cooperative systems simultaneous interactions are likely, it is important to 
note that an active individual may have multiple active faces at a time (i.e., a system 
is required to provide means for the preparation of an interaction as well as means for 
easy access to the repository of faces to choose from).  

A Character is a specific configuration of a face. When instantiated in an interac-
tion, an ActiveIndividual selects and transforms a face into a Character containing 
 



32 C. Beckmann and T. Gross 

information and dissemination methods: ‘When a participant conveys something dur-
ing interaction, we expect him to communicate only through the lips of the character 
he has chosen to project’ [6, p. 176].  

In our pattern the interface Artefact refers to work-related (e.g., documents) and 
leisure-related objects (e.g., movies). In contrast, Goffman narrows the performance 
down to interacting individuals or teams; for Goffman external objects contribute to 
the overall expression of a situation as a setting: ‘there is the setting, involving furni-
ture, decor, physical layout, and other background items which supply the scenery and 
stage props for the spate of human action played out before, within, or upon it.’ [6, 
p. 22]. However, in social computing often an Artefact is an essential part of an inter-
action. It relates to virtual or physical objects that can be created, edited, and deleted 
in the course of an interaction.  

In a routine, a composition of artefacts that can be involved; in social computing 
systems this is typically represented as collaborative editing or sharing.  

The Interaction refers to Goffman’s performance. It is a composition of characters 
of one or more active and one or more passive individuals. It has three phases: in the 
preparation an active individual sets her role; in the execution a character acts towards 
passive individuals or a passive team; and in the finalisation an active individual col-
lects responses from its interaction and uses the outcome for further refinements of its 
faces. A history as set of interactions is important in social computing systems for 
verifying information and deducing information (i.e., drawing conclusions). 

The second structural pattern is the Region Pattern (cf. Fig. 3). It maps Goffman’s 
regions into a combination of Visibility and Locality that can be applied in Interac-
tions. Goffman writes: ‘A region may be defined as any place that is bounded to some 
degree by barriers to perception.’ [6, p. 106]. As described above, Goffman distin-
guishes the regions stage, backstage, and outside. However, in our opinion, social 
computing systems require a more flexible representation that should allow for and 
contribute to in-between regions. 

 

Fig. 3. Region Pattern as UML class diagram 

The interface Visibility represents filters for types of information and dissemination 
methods to be applied to interaction with social entities. While active individuals and 
active teams can access a huge amount of information, passive individuals and pas-
sive teams can only access designated information.  

The interface Locality also refers to filters, but they provide methods as a boundary 
of real locations (e.g., a display in a shared office space) or virtual locations (e.g. a 



 Social Computing—Bridging the Gap between the Social and the Technical 33 

user’s timeline). Combining Visibility and Locality provides means for sophisticated 
configurations than the region types proposed by Goffman could cover. The combina-
tion reflects individual sharing preferences that also apply during a system’s auto-
matic inference of information (i.e., map and reduce). For instance, an interaction can 
span real and virtual locations at once while communication is still filtered. The filter-
ing can be achieved by matching properties of CommunicationEntities (e.g., an Arte-
fact as a shared object) towards the properties of passive entities involved into the 
interaction. Subsequently, we introduce the interfaces DirectSocialCommunication 
and MediatedSocialCommunication along their patterns. 

4.2 Dynamics of Social Computing 

The dynamics of social computing systems refers to the general communication be-
haviour of humans within the system. The two patterns focus on the interaction be-
tween an ActiveIndividual and a PassiveTeam as the execution of an interaction.  

We show two patterns as use cases in UML sequence diagrams. Each diagram 
shows the entities involved in the execution, and sequences of synchronous and asyn-
chronous calls used in it (please note, we explain an interaction of an individual, for 
team performances the steps are similar).  

 

 

Fig. 4. Direct Social Communication Pattern as UML sequence diagram 

The first dynamic pattern is the Direct Social Interaction Pattern (cf. Fig. 4). It 
starts with the path an ActiveIndividual executed to setup its Face and Character and 
activates a PassiveIndividual—summarised as anticipate-call in the diagram. After 
that, an ActiveIndividual instantiates a Character object for direct social interaction.  
According to Goffman, faces are selected and adapted, rather than created; he writes: 
‘different routines may employ the same front, it is to be noted that a given social 
front tends to become institutionalised in terms of the abstract stereotyped expecta-
tions to which it gives rise, and tends to take on a meaning and stability apart from  
the specific tasks which happen at the time’ [6, p. 27]. This manner of stereotypical 
selection and adaptation allows PassiveIndividuals to recognise familiarity between 
Characters of different ActiveIndividuals and thus simplifies the validation process.  

 



34 C. Beckmann and T. Gross 

The Character object creates the DirectSocialCommunication object for delivering 
information. In the loop of direct social communication, a Character calls its  
associated Face to obtain valid and appropriate information. It then delegates this 
information to the DirectSocialCommunication object for further distribution in an 
Interaction. Goffman describes direct social interaction as a communication of ‘sign-
activity’—the transmission of expressions towards the audience relying on ‘sign-
vehicles’. He distinguishes two ‘radically different’ types of communication: the 
given and the given-off [6, p. 2]. In this pattern DirectSocialCommunication refers to 
the type ‘given’. It stands for communication in a narrow sense as it consists of verbal 
or written symbols (i.e., speech and text). All social entities involved in an interaction 
are familiar with the encoding and decoding these symbols.  

The process of delivering DirectSocialCommunication occurs frequently in a loop 
and simultaneously during an interaction, the resulting calls are asynchronous ones. 
As described previously, a PassiveIndividual receives the information and matches its 
consistency. A PassiveIndividual responds accordingly concerning the information’s 
inner validity (e.g., authorisation of sender and contents) as well as regarding previ-
ously received ones (e.g., history of the interaction).  

An ActiveIndividual can emphasise information during sending DirectSocialCom-
munication as it can adapt a Face using the responses received—Goffman speaks of 
governable aspects [6, p. 7].  

 

 

Fig. 5. Mediated Social Interaction Pattern as UML sequence diagram 

The second dynamic pattern we introduce is the Mediated Social Interaction  
Pattern (cf. Fig. 5). It reflects the process of accessing an artefact and distributing 
occurring information of accessing it towards the passive individuals. In cooperative 
systems and social media applications this type of information is typically used for 
providing awareness information to the users [10]. 

MediatedSocialCommunication refers to communication in a broader sense and is 
related to Goffman’s ‘given-off’. It consists of a range of behaviours that can hardly 
controlled or manipulated—Goffman writes of ungovernable aspects and is of ‘more 
theatrical and contextual kind, the non-verbal, presumably unintentional kind, 
whether this communication be purposely engineered or not.’ [6, p. 4]. When access-
ing an Artefact at least one separate object MediatedSocialCommunication is created 
automatically. The PassiveIndividual receives information and matches it with previ-
ous objects of the type DirectSocialCommunication and MediatedSocialCommunica-
tion and responds accordingly. 



 Social Computing—Bridging the Gap between the Social and the Technical 35 

5 Discussion and Conclusions  

In this paper, we have argued that designers and developers of social computing sys-
tems face complex design decisions. To support them, we identified key concepts of 
Goffman’s framework and derived structural and dynamic UML patterns.  

Our study of Goffman’s framework and the derived patterns relate to some find-
ings of previous work on patterns—corroborating these findings. Our patterns bridge 
between the artefact-specific patterns of Martin et al. [13, 14] and the collaboration-
specific patterns of [19]. The Social Entity Pattern represents the typical behaviour of 
users frequently switching their hats between the two roles of an active individual and 
a passive individual. The faces they rely on during their performances are diverse in 
terms of contained information, actions, and reactions. System should address this 
need for diversity by providing a repository of faces the users can chose from and 
evolve their characters upon. Yet, our pattern reaches beyond the existing ones, as it 
allows multiple, persistent, temporal and spatial active characters. The Region Pattern 
addresses the requirement of diverse spaces for preparing, sharing, and acting. Social 
computing systems should provide these spaces, as users need them for their perfor-
mance. On the one hand users prepare the interaction using more ‘technical standards’ 
in a ‘backstage’ region where ‘the suppressed facts make an appearance.’ [6, p. 112]. 
On the other hand, users interact on ‘stage’ type regions using more ‘expressive stan-
dards’. Providing stability of locality and visibility in this pattern is important for 
preventing users of unmeant disclosures that Goffman calls ‘some major forms of 
performance disruption—unmeant gestures, inopportune intrusions, faux pas, and 
scenes.’ and ‘When these flusterings or symptoms of embarrassment become per-
ceived, the reality that is supported by the performance is likely to be further jeopar-
dised and weakened’ [6, p. 212]. The Direct Social Interaction Pattern and Mediated 
Social Interaction Pattern cope with the performance itself and provide a model for 
Goffman’s two communication types of ‘given’ and ‘given-off’. Users require means 
of dramaturgical discipline—for instance, the anticipation of the passive individu-
als—to manage their impression validly. The patterns explicitly inform designers and 
software engineers of social computing systems to apply the Region Pattern in order 
to consider the hardly to governable type of communication (e.g., when accessing 
resources within the system or generating meta data). For future work the structural 
and the dynamic patterns should be applied in the design of social computing systems 
so their actual benefit for designers and developers in conceptualising and implement-
ing can be measured in empirical studies. Furthermore, Goffman offers detailed de-
scriptions of more social processes (e.g., make work) and best practices (e.g., team 
collusion) that may supply further patterns towards an extensive language of patterns 
for social computing systems. 

References  

1. Alexander, C.: The Timeless Way of Building. Oxford University Press, N.Y. (1979) 
2. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-

struction. Oxford University Press, Oxford (1977) 



36 C. Beckmann and T. Gross 

3. Alexander, C., Isikawa, S., Silverstein, M.: A Pattern Language. Oxford University Press, 
Oxford (1977) 

4. Arvola, M.: Interaction Design Patterns for Computers in Sociable Use. Int. J. of Computer 
Applications in Technology 25(2/3), 128–139 (2006) 

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley, Reading (1994) 

6. Goffman, E.: The Presentation of Self in Everyday Life. Doubleday Anchor Books, N.Y. 
(1959) 

7. Gross, T.: Supporting Effortless Coordination: 25 Years of Awareness Research. Comput-
er Supported Cooperative Work: The J. of Collaborative Computing 22(4-6), 425–474 
(2013) 

8. Gross, T., Beckmann, C.: Advanced Publish and Subscribe for Distributed Sensor-Based 
Infrastructures: The CoLocScribe Cooperative Media Space. In: Proc. of the Seventeenth 
Conf. on Parallel, Distributed, and Network-Based Processing, PDP 2009, pp. 333–340. 
IEEE CS Press, Los Alamitos (2009) 

9. Gross, T., Oemig, C.: From PRIMI to PRIMIFaces: Technical Concepts for Selective In-
formation Disclosure. In: Proc. of the 32nd Conf. on Software Engineering and Advanced 
Applications, SEAA 2006, pp. 480–487. IEEE CS Press, Los Alamitos (2006) 

10. Gross, T., Stary, C., Totter, A.: User-Centered Awareness in Computer-Supported Cooper-
ative Work-Systems: Structured Embedding of Findings from Social Sciences. Int. J. of 
Human-Computer Interaction 18(3), 323–360 (2005) 

11. Kaplan, A.M., Haenleina, M.: Users of the World, Unite! The Challenges and Opportuni-
ties of Social Media. Business Horizons 53(1), 59–68 (2010) 

12. Marca, D., Bock, G. (eds.): Groupware: Software for Computer-Supported Cooperative 
Work. IEEE CS Press, Los Alamitos (1992) 

13. Martin, D., Rodden, T., Rouncefield, M., Sommerville, I., Viller, S.: Finding Patterns in 
the Fieldwork. In: Proc. of the Seventh European Conf. on Computer Supported Coopera-
tive Work, ECSCW 2001, pp. 39–58. Kluwer Academic Publishers, Dortrecht (2001) 

14. Martin, D., Rouncefield, M., Sommerville, I.: Applying Patterns of Cooperative Interac-
tion to Work (Re)Design: E-Government and Planning. In: Proc. of the SIGCHI Conf. on 
Human Factors in Computing Systems, CHI 2002, pp. 235–242. ACM, N.Y. (2002) 

15. Martin, D., Sommerville, I.: Patterns of Cooperative Interaction: Linking Ethnomethodol-
ogy & Design. ACM Trans. on Comp.-Human Interaction 11(1), 59–89 (2004) 

16. Object Management Group Inc. Documents Associated With Unified Modelling Language 
(UML), V2.4 (2011), http://www.omg.org/spec/UML/2.4/ (accessed February 
5, 2014) 

17. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture. John Wiley & Sons, Chichester (2000) 

18. Schmidt, K.: Cooperative Work and Coordinative Practices - Contributions to the Concep-
tual Foundations of Computer-Supported Cooperative Work (CSCW). Springer, Heidel-
berg (2011) 

19. Schuemmer, T., Lukosch, S.: Patterns for Computer-Mediated Interaction. John Wiley & 
Sons, Chichester (2007) 

20. Sommerville, I.: Software Engineering 8. Pearson Education Limited, Harlow (2007) 
21. Stevens, W.P., Myers, G.J., Contantine, L.L.: Structured Design. IBM Systems J. 13(2), 

115–139 (1974) 


