
COLLABORATIONBUS AQUA: EASY COOPERATIVE 
EDITING OF UBIQUITOUS ENVIRONMENTS  

Maximilian Schirmer and Tom Gross 
Bauhaus-University Weimar  

ABSTRACT 

Cooperative ubiquitous environments support user interaction and cooperative work by adapting to the prevalent situation 
of the present users. They are typically complex and have many environment components—interconnected devices and 
software modules—that realise new interaction techniques and facilitate collaboration. Despite this complexity, users 
need to be able to easily adapt their environments to the respective needs of the workgroups. In this paper, we present the 
CollaborationBus Aqua editor, a sophisticated, yet lightweight editor for configuring ubiquitous environments in groups. 
The CollaborationBus Aqua editor simplifies the configuration and offers advanced concepts for sharing and browsing 
configurations among users.  

KEYWORDS 

Cooperative Ubiquitous Environments; Configuration; Editor; Sharing and Browsing.  

1. INTRODUCTION  

Cooperative ubiquitous environments reach beyond single-user interaction and facilitate cooperation and 
collaboration among their users. They leverage interaction between users, artefacts, and devices, with the 
goal of softening or even eliminating the barrier between local and remote participants. For instance, a 
conference room can capture the positions of present persons and their actions, and then adapt the computer 
and projector configuration, the lighting, and the window shutters; and it could store these settings to support 
easy later resumption of a meeting.  

The configuration of a cooperative ubiquitous environment describes the settings of the environment’s 
components, as well as the degree and shape of the individual interaction between the components. Typically, 
the task of configuring an environment is realised by programmers or administrators, because it requires great 
insight into the underlying infrastructure and system architecture, and adequate programming skills. For 
instance, the rules for the adaptation behaviour of the above conference room are rather difficult to configure.  

The configurations should cover the needs of the end-users and their workgroups. However, despite the 
progress in base technologies such as data acquisition, processing, and machine learning, creating and 
adapting configurations is still a complex process. In order to facilitate this process, users need empowerment 
for end-user configuration.  

In this paper we present CollaborationBus Aqua—a sophisticated, yet light-weight editor for cooperative 
ubiquitous environments that supports elegant capturing and storing of data from the physical as well as 
electronic world, visual composition of configurations, and sharing and browsing of configurations among 
groups of configuration authors. In the next sections we describe the concept and implementation of 
CollaborationBus Aqua and report on its user interaction. We then present related work.  

2. COLLABORATIONBUS AQUA CONCEPT  

The requirements for CollaborationBus Aqua emerge from our own experience of developing cooperative 
ubiquitous environments for many years, and lessons learned from related work such as the examples below. 
In this section we focus on the three core concepts of CollaborationBus Aqua.  

IADIS International Conference Collaborative Technologies 2010

77



2.1 Advanced and Easy Capturing of Data  

The CollaborationBus Aqua editor includes an ubiquitous sensor-based platform that distributes and 
processes gathered data in the form of sensor events. The powerful sensor-based platform Sens-ation (Gross 
et al. 2006) manages all the capturing, processing, and storing of the data for the users in the background. 
The combination of CollaborationBus Aqua and Sens-ation provides access to the environment components: 
sensors that gather data, inference engines that process gathered data, and actuators that trigger feedback in 
the user environment. Furthermore, Sens-ation offers a broad range of gateways as interfaces for the easy 
management of components and access to both raw and processed sensor data.  

Sensors are either hardware sensors for light, movement, temperature, noise; or software sensors for 
applications such as email, Web browser, office applications. The gathered data is used to abstract awareness 
information about the users in a cooperative ubiquitous environment.  

Inference engines in the Sens-ation platform process incoming sensor data. This processing mechanism 
allows to infer higher-order information from the raw sensor data. Processing results vary from simple 
mathematical calculations (e.g., mean values) up to complex interdependent processing chains that involve 
multiple inference engines’ results. Results from inference engines are transferred back to the platform as 
sensor events, so clients and actuators can access them through all available gateways.  

Actuators realise actions within the environment according to the results of the inference process. Just 
like sensors, actuator components are either software applications or hardware devices. While hardware 
actuators change physical settings within the environment, software actuators typically serve as means of 
presenting notifications on a computer monitor.  

2.2 Composing Configurations Visually  

In CollaborationBus Aqua users visually compose configurations using the components of the platform. The 
editor follows the visual programming paradigm that supports configuration tasks by means of visually 
appealing graphical representations (Myers 1986). These graphical representations abstract programmatic 
behaviour, yet still provide an indication of the underlying technology. The CollaborationBus Aqua editor 
uses distinct graphical elements for sensors, inference engines, and actuators.  

Figure 1 shows our scheme of configurations consisting of one or more sensors, one or more inference 
engines, and one or more actuators. In this exemplary configuration, a user wants to be notified when the 
temperature measured by a temperature sensor has reached a defined threshold. The user has connected the 
sensor’s output to an inference engine’s input, and the inference engine’s output to an actuator’s input. The 
inference engine evaluates the incoming temperature and notifies the actuator.  

 
Figure 1. Scheme of configurations including example.  

Environment components are instantiated by drag-and-drop. Users create connections among them by 
drawing lines between two individual representations. The editor handles the necessary technical procedures 
in the background and provides an indication whether the established connections are correct on a technical 
as well as on a semantic level.  

The data type validation mechanism evaluates compatibilities and notifies users with a warning if they 
create connections that form incompatible relationships between components. This avoids that the 
composition results in unpredictable behaviour within the environment. Typical examples for 
incompatibilities are: connecting two outputs of components (e.g., connecting the outputs of two sensors with 
each other), or connecting components with incompatible data types (e.g., connecting a temperature sensor 
with a Boolean inference engine).  

 

 
ISBN: 978-972-8939-21-2 © 2010 IADIS

78



2.3 Sharing and Browsing Configurations  

CollaborationBus Aqua encourages its users to share, explore, and reuse configurations. In CollaborationBus 
Aqua all configurations are accessible through a shared repository, which allows groups of authors to 
cooperate during the composing. This repository especially provides beginners, who do not have experience 
with configuring ubiquitous environments, with an entry point to the system (Mackay 1990). With a growing 
number of configurations in the repository, beginners get a good sample of configurations and learn about 
their cooperative ubiquitous environment and configuration options therein.  

Users can choose between sharing and privacy—that is, they can either place their configuration in a 
shared repository that every user in a group can access, or save their configuration in a private local file (see 
(Greif & Sarin 1986) for early findings on sharing and privacy).  

The shared repository facilitates synergies among users. Components instantiated within the 
CollaborationBus Aqua editor refer to concrete physical artefacts or software instances. We define synergies 
as the similar use of the same components within the repository of available configurations. When users 
access components that are already part of other users’ configurations, all users involved receive information 
about their mutual components. The notification encourages them to explore each other’s configuration or 
contact each other to discuss synergies.  

 
Figure 2. Synergies in shared cooperative ubiquitous environment configurations.  

The underlying mechanism works as follows (cf. Figure 2): the shared repository of configurations is a set 
of components. Any configuration therein forms a subset of components. When the intersection of any 
number of configurations produces a set that is not the empty set, synergies occur.  

3. COLLABORATIONBUS AQUA IMPLEMENTATION  

The CollaborationBus Aqua editor is a stand-alone application based on Java 1.5.0_13, MySQL 5.0.41, and 
Apache 2.0.59 on Mac OS X 10.4.9 and as such was straight-forward to implement and provides user 
interaction concepts that are well known to end-users. It acts as a client to the Sens-ation sensor platform.  

CollaborationBus Aqua is comprised of five core subsystems that implement the main program logic (cf. 
Figure 3). The CBAGUI subsystem is responsible for managing both the CBABrowser component as well as 
the CBAGraph component that forms the editor’s core. The CBAGraphHandler subsystem manages the 
creation of the visual representations for the components and devices of the environment. The 
CBASensationHandler subsystem communicates directly with the associated Sens-ation instance via XML-
RPC (Scripting News Inc. 2010) and distributes the gathered data and its available components to the 
CBAGraphHandler. The management and delegation of actuator components is realised by the 
CBAActuatorHandler subsystem. It manages all available and instantiated actuators and communicates 
directly to Sens-ation via XML-RPC. It provides actuator parameters for the graphical representations of 
actuator components to the CBAGraphHandler. The CBASharing subsystem directly relates to the CBAGUI 
subsystem. It handles access to the repository of shared configurations by delegating tasks to a database 
server. It also processes the related data for display within the graphical user interface and implements the 
synergy finding algorithm.  

IADIS International Conference Collaborative Technologies 2010

79



 

Figure 3. Component diagram of CollaborationBus Aqua. 

Subsequently, we explain how the concepts from Section 2 are implemented with the five subsystems. 
Please note that CollaborationBus Aqua has been completely implemented and deployed; yet, due to page 
limitations we cannot provide a deployment diagram.  

3.1 Data Capturing  

CollaborationBus Aqua requests and obtains data as a client for the Sens-ation platform. The editor 
implementation makes use of the XML-RPC gateways with synchronous communication. CollaborationBus 
Aqua relies on synchronous communication, because it is important to apprise all users condition without any 
noticeable delay. The CBASensationHandler subsystem of CollaborationBus Aqua implements 
communication management and initiation. It encapsulates connections to various Sens-ation platforms and 
keeps a history. The CBASensationHandler acts as a surrogate for the actual Sens-ation connection that is 
active. Instead of interacting directly with Sens-ation, all components of the CollaborationBus Aqua system 
direct their requests to the CBASensationHandler. The Sens-ation connection components make use of  the 
Java XmlRpcClient implementation as well as the Java WebServer implementation (both from the 
corresponding Apache project framework (Apache Software Foundation 2010). While the XmlRpcClient is 
used to send requests to Sens-ation (e.g., for acquiring information about available sensors), the WebServer 
component listens for notifications that are sent from Sens-ation when a sensor event of an observed sensor 
occurs.  

3.2 Visual Composing  

Visual composing in the CollaborationBus Aqua editor is implemented in the CBAGraphHandler subsystem 
and based on a Model-View-Controller (MVC) pattern. The base of the visual composing graphical user 
interface is an interactive graph interface element, the CBAGraph. This graph implementation bases on the 
Java JGraph (JGraph Ltd 2009) framework that provides a graph component for the Java Swing framework. 
The CBAGraph component in the CBAGraphHandler subsystem contains the CBAGraphModel with the 
necessary data for each node in the graph, as well as information about relationships between graph nodes. 
The CBACellViewFactory, CBACellView, and CBAVertexRenderer components realise the visual 
representations of these graph nodes, in conjunction with the CBAGraphRouting component that generates 
control points for the rendering of smooth spline-based edges between the nodes of the graph.  

3.3 Sharing and Browsing Configurations  

Sharing and browsing configurations is implemented in the CBASharing subsystem. Its 
CBASharingDatabase provides an abstraction layer to the underlying MySQL database and implements the 
functional behaviour to save and load configurations. An identifier string and the creator of the composition 
uniquely identify every composition. Each composition in the GUI is serialised to an internal XML 
representation, which facilitates their internal handling, and includes all necessary information to reload, edit, 

 
ISBN: 978-972-8939-21-2 © 2010 IADIS

80



and share configurations. The identifier string, the creator, and the XML representation of the composition 
are stored persistently in the database.  

In order to detect synergies in shared configurations, a set of comparisons across all configurations in the 
repository is necessary. The components’ identifiers and their locations are compared. When both the 
identifiers and the locations of two components match, a synergy is detected. For this purpose, an XML pull 
parser sequentially scans all configurations in the repository and evaluates the contained components. When 
a synergy is detected, a synergy flag is set for the corresponding component in the CBAGraphModel. During 
the graph rendering cycle, the CBAGraphHandler triggers the display of a graphical synergy notification for 
all graph nodes that are marked with the synergy flag. The synergy notification also contains the identifiers of 
configurations with synergies, as well as information about their authors. Users can directly explore and 
browse these configurations to find out more about them.  

4. COLLABORATIONBUS AQUA USER INTERACTION  

CollaborationBus Aqua consists of the Main Window (cf. Figure 4(a)) and the Inspector (cf. Figure 4(b)). 
The Main Window provides four parts: (aa) the Operation Mode toolbar on the top end of the window, (ab) 
the Component Browser below, (ac) the Composer in the centre of the window, and (ad) the Statusbar in the 
bottom of the window.  

 
Figure 4. Graphical user interface of CollaborationBus Aqua, with (a) the Main Window, and (b) the Inspector.  

4.1 Connecting, Editing, and Sharing  

The Operation Mode toolbar of the Main Window of CollaborationBus Aqua provides on the left side the 
access to three basic Operation Modes: Connecting, Editing, and Sharing. Switching to one of the modes 
changes the content of the Main Window. On the right side of the Operation Mode toolbar, two additional 
buttons allow users to delete components and to open the Inspector. In the Connecting Mode, users either 

IADIS International Conference Collaborative Technologies 2010

81



enter the appropriate connection details of the Sens-ation instance they want to connect to or select one from 
the connection history list. Once users establish a connection, the Editing and Sharing Modes can be 
accessed. The Editing Mode is the core of the application and provides the Component Browser, the 
Composer, and the Inspector. From the Component Browser, components are instantiated by simply dragging 
them to the Composer, where they are transformed into graph nodes. The Inspector allows exploring and 
configuring selected components. In the Sharing Mode, users browse the repository of available 
configurations to learn about their environment or to find a template as a starting point for an editing process.  

4.2 Exploring and Configuring Components 

The Inspector provides detailed information and configuration options for components in the Editing Mode 
and dynamically changes its content in relation to selected components. For example, if users select a sensor 
component, the inspector only displays information about it and its recent events; if they select an inference 
engine or actuator component, the Inspector also provides means of configuring their parameters. The 
Inspector is a floating palette window always located on top of other windows of the editor. Figure 5 shows 
the Operation Modes of the Inspector. Changing between Operation Modes follows the pattern of the Main 
Window: a toolbar with three different toggle buttons representing the associated modes.  

(a)   (b)   (c)  

Figure 5. The operation modes of the inspector: (a) General information, (b) Recent events, and (c) Synergy browser.  

The (a) General Information Mode displays common data about the selected component (e.g., its location, 
owner). This helps users to identify physical components in their environment. Furthermore, they provide a 
common ground for communication with other users of these components, because they allow explicit 
identification. The (b) Recent Events Mode provides an overview of the component’s recent condition, which 
is mostly useful for sensor and inference engine components. It displays either a graphical or a tabular 
visualisation of the recent events, according to the component and its data type. For instance, a temperature 
sensor produces numerical event values, which can be visualised as a temperature graph, while an inference 
engine that evaluates a given input value against a threshold will output Boolean values, which require a 
tabular visualisation. The (c) Synergy Browser Mode allows user to quickly inspect a component’s synergies 
within other configurations in the form of a tabular configuration listing. In the case of existing synergies, the 
Inspector provides two buttons for either previewing or loading a selected configuration with synergies.  

5. RELATED WORK  

There are several end-user editors for editing and managing configurations of ubiquitous environments. They 
provide inspiring concepts with respect to their enabling middleware (e.g., eGadgets), their scheme of the 

 
ISBN: 978-972-8939-21-2 © 2010 IADIS

82



configurations (e.g., iCAP), and easy user interaction (e.g., Jigsaw). As a limiting factor they mostly focus on 
individual end-users editing configurations of single-user settings.  

In eGadgets (Mavrommati et al. 2004) a Gadgetware Architectural Style (GAS) framework for 
interconnecting reusable components in the form of devices, and a GAS editor for building custom 
compositions were developed. While an enabling middleware manages and controls all components within 
the framework, the editor hides complexity from users. The editor retains insight to the dataflow to avoid 
behaving like a black box for users. By means of connecting the components’ inputs and outputs, users 
generate a range of scenarios consisting of home appliances that have been adapted to be accessible through 
the GAS platform. The GAS framework models individual components following a plug-synapse model, 
where each component offers a set of abilities and requests services from other components. Devices in the 
physical world are represented as plugs. When different plugs are instantiated and connected, they form 
synapses. This model abstracts and represents compatible data types and data flows, and thus effectively 
helps users understand which components can be interconnected. In contrast to the eGadgets editor, 
CollaborationBus Aqua focuses on a cooperative composing process for ubiquitous computing environments, 
and offers a sharing and browsing mechanism with synergy notifications.  

Another related editor is the iCAP (Lim & Dey 2009; Sohn & Dey 2003) editor that allows users to 
prototype applications and scenarios for context-aware environments. Following a pen-based interaction 
technique, the system’s components (input and output devices) may be interconnected to form a conditional 
rule-based construct in a user-friendly way. The iCAP editor allows users to draw their own sketches, which 
are used to represent the underlying devices within the editor environment. These sketches help to generate a 
deeper understanding of the constructed prototype and the interrelations between devices. When components 
are connected, their rule-based interaction can be tested in the editor’s run mode that allows the simulation of 
certain input states as well. Similar to the eGadgets editor, iCAP realises a single-user concept. In contrast, 
CollaborationBus Aqua aims at leveraging cooperative editing of ubiquitous computing compositions and 
offers synergy notifications. 

The Jigsaw editor (Dey & Newberger 2009; Humble et al. 2003) is a graphical front-end to a user-
oriented framework that supports users in configuring domestic ubiquitous environments. Users move 
dragging components (represented as jigsaw pieces) from the editor’s list view onto a canvas to create 
compositions that interconnect hardware sensors and devices from a domestic environment. Differences 
among the jigsaw pieces (either output port, or input port, or both) reflect the connection properties of the 
underlying devices and help users to identify what devices are compatible and can be connected. The editor 
provides both visual and auditory feedback when interactions occur, and visualises the dataflow to help users 
keep track of sensor updates. In contrast to the Jigsaw editor, CollaborationBus Aqua relies on a 
sophisticated sensor-based ubiquitous computing event notification infrastructure with multifarious 
environment components and offers powerful mechanisms for filtering or further processing of gathered data.  

6. CONCLUSIONS  

Cooperative ubiquitous environments combine ubiquitous computing with the general aim of supporting 
collaboration and cooperation in a shared information space, as envisioned in computer-supported 
cooperative work (Bannon & Schmidt 1989). These environments require a lot of interconnected devices and 
software components in order to realise new interaction techniques and facilitate collaboration through them.  

We introduced CollaborationBus Aqua that provides mechanisms and easy interfaces for accessing 
sensors and the event data they capture as well as for composing configurations. It is a continuation of our 
CollaborationBus editor (Gross & Marquardt 2007) with a special focus on end-users—combining easy 
handling with complex compositions. In particular, this editor is based on a sophisticated interaction concept 
that abstracts from the technical complexity of the cooperative ubiquitous environment and its components 
and allows users to focus on the semantics of their configurations. With the sharing and browsing 
mechanisms, users can exchange their configurations—this is particularly helpful for novice users who can 
browse existing configurations and do learning by example.  

The CollaborationBus Aqua editor currently supports the management of sensors, inference engines, and 
actuators. For the future, users would benefit from including more capabilities for visualising and simulating 
sensor data. While users are presented with a simple configuration process, the editor in the current form has 

IADIS International Conference Collaborative Technologies 2010

83



limitations concerning the scalability of the presentation of large configurations. This is particularly due to 
the fact that it can only display flat configurations, where up to ten components can be seen and manipulated 
at a time on a typical 17 inch screen. Introducing a nesting mechanism for components would allow users to 
divide and conquer their bigger configurations into multiple levels of abstraction.  

ACKNOWLEDGMENTS  

The authors would like to thank Christoph Beckmann, Mirko Fetter, Nicolai Marquardt and the other 
members of CML, as well as the anonymous reviewers for valuable feedback. Part of the work has been 
funded by the Federal Ministry of Transport, Building, and Urban Affairs and by the Project Management 
Juelich (TransKoop FKZ 03WWTH018).  

REFERENCES  

Apache Software Foundation. ws-xml-rpc - Apache XML-RPC. http://ws.apache.org/xmlrpc/, 2010. (Accessed 2/3/2010). 
Bannon, L.J. and Schmidt, K. CSCW: Four Characters in Search of a Context. In Proceedings of the First European 

Conference on Computer-Supported Cooperative Work - ECSCW'89 (Sept. 13-15, Gatwick, UK). Elsevier, Dortrecht, 
NL, 1989. pp. 358-372. 

Dey, A.K. and Newberger, A. Support for Context-Aware Intelligibility and Control. In Proceedings of the Conference 
on Human Factors in Computing Systems - CHI 2009 (Apr. 4-9, Boston, MA). ACM, N.Y., 2009. pp. 859-868. 

Greif, I. and Sarin, S. Data Sharing in Group Work. In Proceedings of the 1986 ACM Conference on Computer-
Supported Cooperative Work - CSCW '86 (Dec. 3-5, 1986, Austin, TX). ACM, N.Y., 1986. pp. 175-183. 

Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-Oriented Platform for Developing Sensor-Based 
Infrastructures. International Journal of Internet Protocol Technology (IJIPT) 1, 3 (2006). pp. 159-167. 

Gross, T. and Marquardt, N. CollaborationBus: An Editor for the Easy Configuration of Ubiquitous Computing 
Environments. In Proceedings of the Fifteenth Euromicro Conference on Parallel, Distributed, and Network-Based 
Processing - PDP 2007 (Feb. 7-9, Naples, Italy). IEEE Computer Society Press, Los Alamitos, 2007. pp. 307-314. 

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva, B., Rodden, T. and Hansson, P. "Playing with the Bits" 
User-Configuration of Ubiquitous Domestic Environments. In Proceedings of the Fifth International Conference on 
Ubiquitous Computing - UbiComp 2003 (Oct. 12-15, Seattle, WA). Springer Berlin/Heidelberg, 2003. pp. 256-263. 

JGraph Ltd. JGraph Home Page. http://www.jgraph.com, 2009. (Accessed 2/3/2010). 
Lim, B.Y. and Dey, A.K. Assessing Demand for Intelligibility in Context-Aware Applications. In Proceedings of the 

11th International Conference on Ubiquitous Computing – UbiComp 2009 (Sept. 30-Oct. 3, Orlando, FL). ACM, 
N.Y., 2009. pp. 195-204. 

Mackay, W.E. Patterns of Sharing Customisable Software. In Proceedings of the 1990 ACM Conference on Computer-
Supported Cooperative Work - CSCW '90 (Oct. 7-10, Los Angeles, CA). ACM, N.Y., 1990. pp. 209-221. 

Mavrommati, I., Kameas, A. and Markopoulos, P. An Editing Tool that Manages Device Associations in an In-Home 
Environment. Personal and Ubiquitous Computing 8, 3-4 (2004). pp. 255-263. 

Myers, B.A. Visual Programming, Programming by Example, and Program Visualisation: A Taxonomy. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems - CHI 1986 (Apr. 13-17, Boston, MA). ACM, 
N.Y., 1986. pp. 59-66. 

Scripting News Inc. XML-RPC Home Page. http://www.xmlrpc.com/, 2010. (Accessed 2/3/2010). 
Sohn, T. and Dey, A. iCap: an Informal Tool for Interactive Prototyping of Context-Aware Applications. In Extended 

Abstracts of the Conference on Human Factors in Computing Systems - CHI 2003 (Apr. 5-10, Fort Lauderdale, FL). 
ACM, N.Y., 2003. pp. 974-975. 

 

 
ISBN: 978-972-8939-21-2 © 2010 IADIS

84


	CT 2010, WBC 2010 - Cover
	CT 2010, WBC 2010
	COPYRIGHT
	SECTION I - CT 2010
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	FULL PAPERS
	INFORMATION MODELLING FOR FLEXIBLE INFORMATION PROVISIONING IN COLLABORATIVE NETWORKS
	NEW DESIGN STRATEGIES: USING THE HIVE MIND SPACE MODEL TO ENHANCE COLLABORATION
	OPEN, COLLABORATIVE TASK MANAGEMENT IN WEB 2.0
	EFFECTIVENESS OF INTER-ORGANIZATIONAL SYSTEMS IN GLOBAL MANUFACTURING: EVIDENCE FROM INDUSTRIAL CASES IN TAIWAN
	A FRAMEWORK FOR MANAGING COLLABORATION AND CONFLICT IN COMPLEX SYSTEMS
	SECURITY FOR ICT COLLABORATION TOOLS
	A STUDY OF SYNCHRONOUS PEER-TUTORING SYSTEM FOR ENHANCING ELEMENTARY STUDENTS’ MATHEMATICS
	SFDL: MVC APPLIED TO WORKFLOW DESIGN
	EFFICIENT PARTITIONING OF GRAPHS IN COLLABORATIVE WORKFLOW EDITOR SYSTEMS
	COLLABORATIONBUS AQUA: EASY COOPERATIVE EDITING OF UBIQUITOUS ENVIRONMENTS
	CONTEXT-AWARE MEDIATED LEARNING SYSTEM FOR ORGANISATIONAL TRANSFORMATION
	SMART CAMERAS FOR COOPERATIVE URBAN APPLICATIONS
	DISCLOSURE TEMPLATES FOR SELECTIVE INFORMATION DISCLOSURE
	AWARENESS INFORMATION TO SUPPORT COLLABORATION AMONG HETEROGENEOUS COMMUNITIES: THE CASE OF CARE NETWORKS
	BROADENING THE PERSPECTIVE ON CLASSIFICATION SYSTEMS IN THE WEB: ANALYZING WEB CLASSIFICATION AS A SITUATED ACTIVITY WITHIN COMMUNITIES OF PRACTICE
	PIECEMEAL: A FORMAL COLLABORATIVE EDITING TECHNIQUE GUARANTEEING CORRECTNESS
	COMPLIANCE VERIFICATION USING A JOINT MODEL OF OPEN WORKFLOW NET AND GLOBAL CALCULUS
	ENCODING MINIMUM REQUIREMENTS OF INTERCONNECTED GRID VIRTUAL ORGANISATIONS USING GENETIC ALGORITHMS

	SHORT PAPERS
	EYE-CONTROL OF VIDEOCONFERENCING ENVIRONMENT USING COMMON WEB-CAMERAS
	GENERATING AWARENESS FROM COLLABORATIVE WORKING ENVIRONMENT USING SOCIAL DATA
	PERFORMANCE EVALUATION OF E-COLLABORATION
	A MOBILE AGENT STRATEGY FOR GRID INTEROPERABLE VIRTUAL ORGANISATIONS
	SERVICE CONFIGURATION ITEM: INTERACTION- BASED SERVICE DESCRIPTION FRAMEWORK
	TOWARDS A MULTILINGUAL SEMANTIC FOLKSONOMY
	ONTOLOGY-BASED CONTENT DEVELOPMENT IN COLLABORATIVE ENVIRONMENTS WITH SEMANTIC SERVICES
	DOMAIN SPECIFIC SERVICE ORIENTED REFERENCE ARCHITECTURE (CASE: DISTRIBUTED DISASTERS AND EMERGENCY KNOWLEDGE MANAGEMENT)
	FROM ITEM TO HUMAN TRACEABILITY BY EPC-AWARE TECHNOLOGIES: A CASE STUDY
	MESSAGE LOGGING FOR EXTERNAL SUPPORT OF WEB SERVICES RECOVERY

	REFLECTION PAPER
	ABOUT PORTAL-BASED COLLABORATIVE ENVIRONMENTS

	POSTERS
	A WIRELESS CORBA ADAPTATION FOR BUILDING A MULTI-USER ENVIRONMENT
	RESOURCE´S RELATIONSHIPS IN THE DESIGN OF COLLABORATIVE WEB APPLICATIONS
	A WIRELESS CORBA ADAPTATION FOR BUILDING A MULTI-USER ENVIRONMENT
	RESOURCE´S RELATIONSHIPS IN THE DESIGN OF COLLABORATIVE WEB APPLICATIONS

	AUTHOR INDEX

	SECTION II - WBC 2010
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	WORKSHOP
	FULL PAPER
	THE ROLE OF WEB-BASED SOCIAL MEDIA IN THE FORMATION OF A TOURISM DESTINATION IMAGE

	SHORT PAPERS
	CREATING A COLLABORATIVE ENVIRONMENT FOR THE SUPPORT AND MANAGEMENT OF GEOGRAPHICALLY DISPARATE EDUCATORS
	ONLINE COMMUNITY FOR THE PROMOTION OF HEALTH DISPARITIES RESEARCH AND TRAINING
	SUPPORTING OPEN INNOVATION COMMUNITIES BY AN INTERACTIVE NETWORK VISUALIZATION
	WEB COMMUNITY CONTRIBUTORS’ MOTIVATION: JAPANESE WIKIPEDIA CASE STUDY

	REFLECTION PAPERS
	ONLINE COMMUNITIES AND OC BUILDING – A REVIEW OF DEFINITIONS AND BEST PRACTICES
	WEB2.0-BASED INTERACTIVE MODE OF INQUIRY-BASED LEARNING AND INTERACTIVE QUALITATIVE RESEARCH
	THE POWER OF COMMUNITY: SURVIVAL STRATEGIES FOR COMPANIES IN THE SOCIAL WEB

	POSTER
	STUDY ON THE APPLICATION OF THE NETWORK FORUM BASED ON 3G TO ENGLISH WRITING COURSE

	AUTHOR INDEX




