
Awareness in Context:
A Light-Weight Approach
Tom Gross, Wolfgang Prinz
Fraunhofer Institute for Applied IT
{tom.gross, wolfgang.prinz}@fit.fraunhofer.de

Abstract. Users who work together require adequate information about their
environment—group awareness. In the CSCW literature several models and systems for
group awareness have been presented. They basically capture information from the
environment, process it, and present it to the users. In general, only the information per
se is captured without capturing information about its context of origin. Furthermore, the
information is then often presented to the users regardless of their current context of
work. In this paper we present a light-weight approach for modelling awareness contexts.
We describe the concept, report on its examination, and discuss implications for the
modelling of contexts and the design of group awareness support.

Introduction
In the CSCW literature it has been emphasised for years that efficient and effective
cooperation requires that the cooperating individuals are well informed about their
partners activities (Dourish and Bellotti, 1992) (Schmidt, 2002). They require
information about the other persons they are cooperating with, about their actions,
about shared artefacts, and so forth. This information is often referred to as
awareness (sometimes with prepositions such as group awareness (Begole et al.,
1999) (Erickson et al., 1999) or workspace awareness (Gutwin and Greenberg,
1998).

In situations where the cooperating individuals are at the same place this
information is often perceived automatically (Heath and Luff, 1991). In other

situations where individuals, who are at different places, have to cooperate as a
group, technological support for the cooperation process as well as the perception of
cooperative activities is essential. This technological support ranges from workflow
management systems to shared workspace systems and other groupware systems.
Typically, these systems provide users with information about the members of the
group, the shared artefacts, and the process of the group activities. However, most of
the approaches and systems only provide this information within the borders of the
respective applications.

We have designed and developed an infrastructure that provides group awareness
across applications called ENI (Event and Notification Infrastructure). ENI is an
event-based awareness environment, which includes various sensors for the
capturing of events and various indicators for their presentation. Interviews with
application partners and discussions with colleagues who have been using ENI
showed that they have the impression that they are better informed than before using
ENI. However, several users pointed out that the information was not always
provided in the situation when it was of utmost use and that on some occasions the
information was to coarse and on other occasions it was to detailed. On a whole the
feedback of the users can be summarised to three major requirements for the
support of group awareness:
• First, awareness environments should provide awareness information in a way

that is adequate for the current situation of the user. The individual user requires
personalised information that is adapted to the situation. Besides personal
preferences the type of information and its presentation largely depend on the
context in which a user is. The context itself depends on parameters like the
current task, the current type of cooperation, the artefacts and tools used, and so
forth.

• Secondly, awareness environments should not only provide the pure awareness
information, but also information about the context of origin of the awareness
information. The context in which an event occurs vastly determines its meaning.

• Thirdly, awareness environments should allow users to share awareness
contexts. Users with shared interests should be able to share and exchange their
awareness profiles.

For the provision of awareness within a closed application such as PoliAwaC
(Sohlenkamp et al., 2000) these requirements can be satisfied in an application-
specific way. However, for a generic awareness infrastructure a more open concept
is required. In this paper we will present such a concept and the implementation of
awareness contexts in a generic infrastructure reflecting these requirements. We will
shortly introduce the ENI awareness environments, which served as a basis for the
realisation of awareness contexts. We will then detail awareness contexts and
specify their structure. We will describe how these awareness contexts were
integrated into ENI and report on an examination of their quality in terms of
effectively identifying actual work contexts. Related work and a summary will
conclude this paper.

Event and Notification Infrastructure
The ENI event and notification infrastructure is a generic extendible awareness
environment, which includes simple but powerful and lightweight mechanisms for
the generation and user configurable presentation of awareness information at the
standard desktop interface (Prinz, 1999). The concept of ENI is based on sensors,
events, and indicators. Figure 1 shows the architecture of ENI.

ENI-
Server

Event-
DB

CG
IENI-

Client AP
I

API

Indicator

API
Sensor

API

IndicatorCGI

Sensor

CGI
API

Figure 1. The notification architecture.

Sensors are associated with actors, shared material, or any other object
constituting or influencing a cooperative environment and generate events related to
them. Sensors can capture actions that take place in the electronic space (e.g.,
changes in documents, presence of people at virtual places) and actions in the
physical space (e.g., movement or noise in a room). Some examples of sensors we
have realised so far are presence sensors checking for the presence of users; web
presence sensors checking the visits of users on Web sites; a web content watcher
checking updates to specific Web pages (e.g., newspapers on the Web); sensors
integrated in office documents, and a shared workspace system.

The generated events are sent to the ENI server—either via the application-
programming interface (API) of the ENI client or via a common gateway interface
(CGI). They are described as attribute-value tuples. The ENI server stores the events
in an event database. This database is realized as a semi-structured database
(Abiteboul et al., 1999) using XML formatted tuples as the storage format. This
decision was made to allow for a flexible handling of different event types, which
would not be possible in a relational database. The communication protocol between
the server and client application is http and the data exchange is XML-based.

Users can use the ENI clients to subscribe to events at the ENI server and to
specify indicators for the presentation of the awareness information. Subscriptions
have the form of event patterns. The client registers these patterns at the server via
the API. When the server receives an event that matches the pattern, the event is
forwarded to the respective client. Additionally, users can specify how they want to

be informed about the event; that is, which indicators should be used for the
presentation.

Indicators are offered in various shapes ranging from pop-up windows, to
applets in Web pages, to ticker tapes (Fitzpatrick et al., 1998), to 3D graphical
presentations in a multi-user environment. Cadiz et al.,(2002) present numerous
examples for the integration of indicators into the windows desktop environment.

On a whole ENI is a flexible tool for the application-independent support of
group awareness. A disadvantage that was discovered in everyday use is the
immediate notification of the users who have specified interest for a certain event. In
many cases users are notified regardless of their current context of work. In order to
provide users with the right information at the right time in an adequate quality and
quantity, we introduce awareness contexts.

Awareness Contexts
In the Merriam-Webster a context is defined as “1: the parts of a discourse that
surround a word or passage and can throw light on its meaning; 2: the interrelated
conditions in which something exists or occurs”. In this paper we see contexts in
the second meaning: in this paper a context can be defined as the interrelated (i.e.,
some kind of continuity in the broadest sense) conditions (i.e., circumstances such
as time and location) in which something (e.g., a user, a group, an artefact) exists
(e.g., presence of a user) or occurs (e.g., an action performed by a human or
machine).

Awareness contexts can emerge in various dimensions: geographical contexts
and locations such as buildings, floors, offices; organisational contexts such as
departments or projects, but also clubs, where people are members of; personal and
social contexts like family, close friends; technological contexts such as users of
specific technologies (e.g., ICQ); action or task contexts such as users who perform
similar actions or tasks with similar tools; and so forth.

In order to make context descriptions computable and interpretable by a
computing system we decided to represent a context using the following set of
attributes (cf. Table I).

These attributes allow the matching of events to contexts of origin and the
detection of the current work context of the user. They are described subsequently:
• Each awareness context has a unique name.
• The administrator of a context is the person who created and manages the

context.
• Members of a context are all users who work in a context and who consequently

produce events through their actions.
• Locations, at which events can be produced, are either electronic (e.g., a shared

workspace) or physical areas (e.g., a meeting room).
• The artefacts of a context are all objects on which users can operate.

• Each context is associated with various single-use and cooperative applications
(e.g., text editors, programming environments, groupware applications).

• Events that are produced in a context are described by their types.
• An access control list for an awareness context comprises a list with all the

rights that exist for each context; each member of an awareness context may
have the right to produce events, to subscribe to events or event types, and to
decide how she wants the events to be presented. Context-specific ACLs
guarantee that the members of a context are informed about the events within the
context, but that privacy is kept concerning users who are not members of the
context. For each context, context members can define their own privacy policy.
This can be seen as an extension of the pure reciprocity that is often claimed. In
some contexts members can agree upon reciprocity in others they can define
other models.

• Each awareness context has various connections to its environment and to other
contexts (e.g., two projects with one awareness context respectively, which have
overlapping membership). Big contexts consisting of many members, many
shared artefacts might be spread over several locations and might be organised
in sub-contexts (Agostini et al., 1996).

Attribute Description
context-name Name of the context
context-admin Human or non-human actor who created the context
context-member Human members of a context
context-location Physical locations related to a context
context-artefact Artefacts of a context
context-app Applications related to a context
context-event Events relevant to a context
context-acl Access control list of a context
context-env Related contexts

Table I. Awareness context attributes.

It is important to note that the context description does not require the
specification of all attributes. For instance, a context can be created and some
attributes like locations or applications are specified only later on; or a context could
have no locations or no applications at all. Nevertheless, the more details are
available for a context, the better events can be matched to the context. In many cases
the attributes of a context can be generated automatically. For instance, if a context
consists of a shared workspace the list of members and artefacts of the context can
be dynamically gained from information about the shared workspace. Furthermore,
it is possible to use pattern or predicates over a set of possible attribute values to
specify an attribute value.

Applying Awareness Contexts
For the provision of awareness information it is important that event notifications are
presented in the appropriate situation; that is in the situation in which the
information is most relevant to the user.

For those systems in which the awareness information is presented in the context
of the origin (e.g., a document), often awareness widgets (Sohlenkamp et al., 2000)
(Gutwin et al., 1996) are used that overlay the presentation of a document. Thus,
whenever users open the document they immediately see the awareness information
attached to the document.

In other cases this problem cannot be solved that straightforward, for example
when awareness information is not directly coupled to a document or when
information shall be presented independent of a document access. In these latter
cases the context of origin of an event and the context of work of a user who
receives a notification are distinct, which entails the following requirements for
context processing:

1. the system has to know the context of origin of an event or deduce the
context of origin;

2. the system has to know the current context of work of the users who need to
be informed; and

3. the user has to be able to specify in which situation she wants to be informed
about events from a specific context in a specific format.

Figure 2 illustrates the processing of events according to these requirements. The
left side illustrates the association of an event with a context. The right side
illustrates the association of a user with a context of work based on his/her current
activities. We will describe the three processing steps subsequently.

Identifying the Context of Origin (1)
Events can either be mapped to a context when they are produced or when they
reach the server. Events can only be mapped to a context at the time of creation, if
either the sensor has information about the context specification (from the Context-
DB describing the contexts of origin) or if the sensor is used for only one context.
In these cases the sensor can immediately add a context attribute to the produced
event. However, often this is not the case and therefore we describe an alternative
method for the association of a context at the server later in this paper.

Events
Events +

Context of
origin

Context-
DB

(origin)

User
Prefs
DB

Context-
DB

(work)

Users

Users +
Context of Work

Users in
(shared) Contexts

1 3

2

Figure 2. 3 Steps to bring user in context.

Identifying the Users’ Context of Work (2)
Once the computed context attribute is added to the respective event the system
needs to detect the current context of a user. For this purpose, the interaction of the
user with the physical and electronic world is captured and analysed. Fine-grained
activities such as typing on the keyboard or passing light barriers have to be
aggregated and matched to contexts. That is, the attributes of the events produced by
the user are compared to the attributes of the known contexts (from the Context-DB
describing the work contexts of users). The result is the selection of a single context
or a list of contexts from the context descriptions that matches best with the current
activities.

Checking the Users’ Preferences (3)
The users can specify in which context of work, i.e., in which situation they want to
be informed about an event from a specific context of origin. Furthermore, they can
specify the format of the presentation of the event information and the schedule for
the presentation. For instance, a user can specify that whenever she is in the work
context ‘Project A’ she wants to receive information related to “Project A’ and
‘Project B’ in a tickertape with a 15 Minute rhythm.

As a result the system knows what is happening in the environment on a whole
and in which part the user is involved. The system can them put the user in a
context. Users with similar activities are informed about each other—and are put in a
shared context. After we have presented these general concepts of awareness
contexts and their processing, we will now show how awareness context are applied
in ENI.

Awareness Contexts in ENI
In order to support awareness contexts in ENI we added two main extensions: at the
ENI server we added a context module and at the ENI client we added a situation
module. Figure 3 shows the extended ENI architecture.

ENI-
Server

Event-
DB

CG
I

AP
I

API

Indicator

API
Sensor

API

IndicatorCGI

Sensor

CGI

API

Context
Module

Situation
Module

ENI-
Client

Figure 3. The extended ENI architecture.

The context module maps incoming events to a context of origin. It compares
attributes of the incoming events with the attributes stored in the context database.
Table II shows the mapping of event attributes to context attributes (see also Figure
4 for an example event).

Event attributes Context attributes
sensor context-app
event-originator context-member, context-location
artefact context-artefact
event-attributes context-event

Table II. Mapping of event attributes to context attributes.

The sensor attribute of the event indicates the application, by which the user
activity was performed. It is therefore matched with the context-app attribute of the
context description. The event-originator is compared with the people listed as
context members, i.e., it verifies if the user is a member of one of the registered
contexts. If a location-based service submits the event (indicated by a special sensor
type) it is compared with possible context-locations to determine the context based
on the location where the activity took place. The artefact attribute identifies the
object on which the user action took place (e.g., a document or file). In addition,
further event-attributes are evaluated if the context description contains a
specification of additional context-event attributes. Examples for such attributes are
the operation performed by the event-originator, the folder in which the artefact is

stored, or the date and time at which the event was submitted. The latter is useful if
the context is valid only during a certain time interval.

The result of the comparison between the event attributes and the context
description is a list of one or more contexts that match with the event attributes,
combined with a weight indicating the strength of the match. The weight depends on
the number and importance of the matching attributes. The importance of each
context attribute is described as part of the attribute specification. This result is
attached to the event by a context attribute (event-context).

Users can take this attribute for the specification of their interest profiles in the
ENI client. Thus, the specification of the interest cannot only be based on discrete
events, but users can also specify a general interest on events of a specific context.
This guarantees that a user is informed about future events of a context. There is no
need to explicitly describe new event patterns for new events. This addresses a
drawback that is often criticized with event based notification systems (Sandor et al.,
1997).

With an additional element of the interest profile users can specify the situation
in which they prefer to be informed about an event. Table III shows the options for
the timing of the presentation of the awareness information. If users want to be
informed immediately, no scheduling has to be done by the Context Module in the
ENI-Server; if users want other timing of their notifications, a scheduling
component of the context module has to make sure that the users are informed
according to their preferences.

Time Description
immediately an event is presented immediately
in the same context an event is presented if the interested user is in the context in which the

event was generated
specific context an event is presented when the user is in a specific context
date an event is presented at a defined date and time (e.g., at lunch time)
age an event is presented after some time—if it has not been presented

because of one of the above rules

Table III. Schedule of notifications and description of situations.

These situations are not exclusive—that is, the users can combine different
schedules. For instance, a user could decide to see events of a specific context any
time she is working in that context and additionally at a certain time (e.g., at login).

In order to analyse the current context of work of a user, a situation module is
added to the ENI client. This component monitors the current activities of a user and
tries to match them to a context. For this purpose, the module uses information from
the operating system about running applications and processed objects. This
information, as well as the events that are generated by the actions of the user, is also
compared to the descriptions of the working contexts. This is done in analogy to the
above mapping of events to contexts of origin. And, similarly, the result can contain
an ambiguous match with more than one context with different weights. In this case

the attributed context-env of the attribute description is evaluated. If the contexts are
connected, the system assumes that the user is in one of the contexts and the
respective events are presented. If no match can be found, a sequence of actions of a
user is monitored and the system tries again to match them to a context. When a
context of work is found with a probability that exceeds the threshold defined by the
user, then the respective events are presented.

Application and Examination of the Model
In this section we will first describe how we applied this context modelling and
processing approach to a shared workspace system, and then we will describe some
results from a study of its use.

Context Support for Shared Workspaces
Cooperative work is often organised with the help of shared workspaces (Pankoke-
Babatz and Syri, 1997). These shared workspaces specify lists of members and
contain shared objects as well as shared applications. If the workspaces of a project
are considered as a context, many attributes of a context can be gained from the
workspace. Thus, actions of the members of shared workspaces can be mapped to
contexts likewise. Therefore, we have chosen such an application to validate the
applicability of the proposed model. We describe experiences and consequences of
the application of our model for a specific Web-based shared workspace system, the
BSCW system (Appelt, 1999). Although this is a specific example, we believe that
the results are of general nature, since the considered data is common to almost all
shared workspace systems.

We first describe the event information that is provided from the system on each
user activity, and then the context descriptions for the mapping of events to specific
project contexts. These descriptions are used as a test case for an examination of the
proposed context model. We use a data set of approx. 16.000 events gathered over
period of 18 month to discuss the suitability of our mapping.

The BSCW server generates for each user action an event that is forwarded to the
ENI server via http in XML-based format. For this purpose a special BSCW sensor
has been realized in the BSCW server. Figure 4 presents an example for a BSCW
event.

The sensor attribute denotes the application that submitted the event. The event-
originator attribute contains the user-id of the user who performed the operation on
a document (artefact) in a folder (i.e., the containing folder). The complementary
bscw-object-id and bscw-folder-id attributes contain a unique system identifier. The
bscw-class and bscw-content-attributes specify the document (mime)-type. The acl
attribute lists the user-ids of all users who have access to the artefact. This list is
constructed from the list of members who have access to the folder that contains the

accessed object. The ENI-server uses this list as access control list for the validation
of access operations on the event. Therefore, only users who have access to an
object in BSCW can read the corresponding events. Date contains the date/time of
the user action and expires the expiration time of the event.

<EVENT>
<ATTRIBUTE type="sensor" value="BSCW"/>
<ATTRIBUTE type="event-originator" value="Uta.Pankoke"/>
<ATTRIBUTE type="operation" value="ReadEvent"/>
<ATTRIBUTE type="artefact" value="weiser_cacm.pdf"/>
<ATTRIBUTE type="bscw-object-id" value="135578"/>
<ATTRIBUTE type="folder" value="Related Work"/>
<ATTRIBUTE type="bscw-folder-id" value="132978"/>
<ATTRIBUTE type="bscw-class" value="Document"/>
<ATTRIBUTE type="bscw-content"value="application/pdf"/>
<ATTRIBUTE type="acl" value="tom.gross, karl-heinz.klein,

 uta.pankoke, wolfgang.prinz"/>
<ATTRIBUTE type="date" value="2003-02-03 09:09:45"/>
<ATTRIBUTE type="expires" value="2003-02-04 09:09:45"/>

</EVENT>

Figure 4: An example event produced by a user operation in BSCW.

In order to describe a possible mapping of events to a context we now explain the
understanding of a context for this shared workspace application. It is common that
a user is member of many different workspaces, whereas each workspace is
associated with a project, a task, or an organizational unit. For the following, we
consider this use and intention of a workspace as the context of this workspace.
Often workspaces contain a large number of folders or subfolders, each containing a
number of documents of different types. Thus, we interpret all user actions on these
objects as actions that happen in the context of this workspace.

However, we can see from the example in Figure 4, that the events themselves do
not contain an indication of the workspace itself. That is, the event does not indicate
the context to which it belongs. This is due to the fact that BSCW system itself has
no notion of a context since this is an external user- or group-specific interpretation
of a shared folder. It is therefore necessary that the association of a context to an
event is computed external to the application.

Figure 6 shows a screenshot of a BSCW workspace of a project on ‘Mobile and
Ubiquitous Cooperation Support’. In this example workspace we have 4 folders
(which contain respectively 4, 9, 1, and 9 documents) and 3 documents. Figure 7
shows a screenshot of the members of this BSCW workspace. This example
workspace only has 4 members.

Figure 6. Screenshot of a BSCW workspace (including folders and documents).

Figure 7. Screenshot of the members of this BSCW workspace.

When a new workspace is created, the BSCW server send corresponding
information to the context module of the ENI-server. The context module of the
ENI-server then creates a context description and starts to periodically (in general, in
a 24 hour interval) to query the BSCW server for information of all workspaces it
knows (the folders and documents, the members, etc.). The BSCW server sends
back for each workspace a list of properties of the respective workspace in XML.
Figure 8 shows an excerpt of this list (for simplification we only include part of the
folder and document list as well as the user list).

<Mobile and Ubiquitous Cooperation Support>
<ATTRIBUTE type="bscw-folder-id" value="455"/>
<ATTRIBUTE type="date" value="2003-02-03 09:09:45"/>
…
<ATTRIBUTE type="artefacts" value="Deliverables, D1.1.doc,

 D1.2.doc, D2.doc, D3.doc, Hardware,
 …
 minutes_meeting_25Feb03.pdf"/>

<ATTRIBUTE type="members" value="tom.gross,
 karl-heinz.klein, uta.pankoke,
 wolfgang.prinz"/>

…
</EVENT>

Figure 8: Workspace property list from BSCW server (excerpt).

The context module of the ENI-server then updates its context descriptions
accordingly.

Examination of the Model
In order to find an expressive description for the event-context mapping, we have
analysed events that were produced by user operations over a period of 18 months.
For a specific (real) user whom we have selected as a test user, the ENI server
contained 15.800 events, to which the user had access (i.e., in which the user-id was
contained in the ACL attribute of the event). From our experiences with the BSCW-
usage and a comparison of the user’s workspaces with that of others, we can
consider this user as a representative user.

Each event has the structure of the example event shown in Figure 4. The user
uses the BSCW server to support cooperation processes in 11 different projects or
tasks. The workspaces contained between 25 and approx. 1200 different objects, but
most contained more than 100 objects. The number of members for a workspace
ranged between 8 to 12 (for 75% of all workspaces) and 30 (seminar group at the
university). In the following, we describe our approach for the specification of a
context mapping by which each event is associated with one of the 11 different
contexts.

The previously presented context model requires the specification of the
following parameters (see Table II): context-app, context-member or context-
location, context-event, or context-artefact. In all cases of our specific application, the
context-app is equal to “BSCW”, the context-location does not apply since we do
not consider real-world locations. Thus, the following mappings remain for
comparison, which will be discussed subsequently:
• event-originator attribute to context-member
• artefact attribute to context-artefact
• event-attributes to context-event

The event-originator attribute to the context-member mapping allows a selection
of a context based on the membership of the event-originator in a certain team or
community that is described as the group of people that constitute a context. For a
project, this would be the project-members. Analysing the data set, we found, that for
our particular user 7 out of 11 contexts contain similar membership list (i.e., the list
of members differed only in 2 or 3 members). These typically were users from
outside the local organisation, whereas the overlapping set contained colleagues
from the local organisation. This shows that the event-originator attribute is not
sufficient for a context selection. Since the distribution of events is almost equal
over all event-originators, an unambiguous mapping can be made only for less than
20% of all events. This is the percentage of members who are member in just one
context.

A more reliable mapping is accomplished by a comparison of the acl attribute of
an event with the context-member attribute of a context. Due to the complete
enumeration of the workspace members in this event attribute and the complete
listing of the context members in the context-member attribute, a reliable selection of
a context is possible. However, this requires that the context-member list is always
kept up-to-date with the membership list of the shared workspace. Although
automatic update procedures can guarantee this consistency, this approach still has a
drawback. Our data shows that 3 out of the 11 contexts contain the same members.
Two of the three contexts a related to each other, thus this ambiguity might not be
very problematic from the user’s viewpoint. However, the third context covers a
different topic than the others. Thus, we need to consider additional criteria for the
context selection.

The artefact attribute to context-artefact comparison enables an unambiguous
mapping, but it requires that the context artefact attribute enumerates all artefacts that
constitute the context. Consequently, the context database mirrors almost the
complete context data. To avoid this duplication we need to find properties that
classify or aggregate artefacts of a context. In our application scenario the folder,
respectively the bscw-folder-id attributes provide such an aggregation. Since the
number of folders is much lower than the number of objects (in our case only 13%
of the number of objects), this reduces the number of duplicates by a significant
factor.

However, compared to the membership list investigated above, the folders that
constitute a context are more dynamic. Therefore, automatic update mechanisms
must ensure that the context database is consistent with the actual context data. Since
the context module is informed about the creation of a new subfolder by an event,
this update mechanism is realised as a simple learning process. Whenever a new
folder is created as a subfolder of a folder that is already listed in a context
description, this new subfolder is automatically added to the context description.
This ensures that the context description is always consistent.

Some lessons learned
This examination of the contextualisation approach for notification systems
illustrates that the context description as well as the contextualisation of event
information requires a careful investigation of the application data. In the presented
case different properties of the event information as well as the context description
were considered to find a suitable mapping.

In the easiest case, the context is hardwired in the event by the application, such
that each event contains an attribute that identifies the context unanimously.
However, this would result in an inflexible solution. The definition of a new context
or the modification of an existing context would require an adaptation of all involved
applications. Furthermore, such an approach makes it difficult to realise a user
specific mapping, in which the same event is mapped to different contexts, because
of different user- or group-preferences. For example, one user group might decide
that all events, which originate from a workspace containing organisational material
(e.g., forms, organisational statistics, etc.) belongs to the context “organisational
stuff”, while the user group that produces this information regards this as the
project context “corporate identity”.

Thus, the presented approach of a centralised context module that provides a
flexible and lightweight approach to model awareness contexts in a user specific
way provides more flexibility. Nevertheless, we have learned that the event to context
matching requires a very detailed and specific context description. This result is
important for the development of future context based systems since it implies that
all activity representation must be as detailed as possible and that successful
matching algorithms must rely on very detailed context description. However, a very
detailed context description is problematic for dynamically changing context data,
since it requires continuously updated context description. The solution for this
problem is twofold. First, it is important to find categories and aggregations of
context data to avoid the necessity to enumerate and thus duplicate workspace
information in the context description. The folder-id serves this purpose for the
shared workspace application. Second, a simple learning mechanism that
automatically updates the context description by interpreting incoming events that
contain update information is useful.

Context sharing
Shared workspaces can also be used for sharing context descriptions. The creator of
an awareness context uses a shared workspace for the storage and administration of
the descriptions. In a shared workspace, the administrator can then specify the
members of the context and grant them access to the context description. So, all
members of the awareness context can update the context description. For instance,
they can add new applications or event types.

As mentioned above user can specify preferences that describe in which situation
a user wants to be informed about which context, in which format and by which
media the events should be presented, and when they should be presented. Similar to
the sharing of context descriptions, shared workspaces can also be used for sharing
user preferences. So, the members of a context cannot only share context
descriptions, but also their preferences. This is a means for context members to be
uniformly informed.

We expect that this kind of support for awareness contexts will allow users to
establish conventions—which we call ‘Context-iquette’. Members of an awareness
context can establish conventions for the kind of information that is monitored and
also conventions for the presentation of this information. This is a major step
towards the protection of privacy—in each context users can find a context-specific
solution to this challenge. In one context users might want to have reciprocity; in
another context users might want to accept asymmetry.

Related Work
The AREA system offers similar group awareness support to our system. Situations
are described as relationships among objects. Objects are single persons, artefacts,
or aggregations such as groups of people. Users can specify which events and
artefacts they are interested in and when and in which intensity they want to be
informed (Fuchs, 1999) (Sohlenkamp et al., 2000).

As opposed to the ENI system the AREA system is based on an object-
relationship model that is application specific and requires detailed specifications.
The modelling of contexts with attribute-value pairs in ENI allows a simple and easy
adaptation. Furthermore, any number of new attributes can be added. Therefore, one
event can be matched with any number of contexts. In AREA events are caused by
actions within the relationship model. In ENI situations relate to actions of
users—that is, the system analyses the actions of users and tries to identify the
context in which a user is in, instead of requiring a pre-specification of object and
event relations.

The Atmosphere model (Rittenbruch, 1999) describes contexts as ‘spheres’.
Users classify their actions on artefacts by means of ‘contextors’ and map them to
specific contexts. When an action is performed a pre-defined contextor has to be
selected. Consequently, the model offers a better quality of event information (e.g.,
write report, instead of simply open report), but requires the users to explicitly
specify the respective contextor. As opposed to ENI Atmosphere is based on a
detailed and static description of relationships among artefacts, objects, and actions.

Besides the above-mentioned event-based models, spatial models have been
presented. In spatial models awareness between objects—persons or artefacts—is
calculated by means of the distance between them in a medium. Objects are
surrounded by the aura, which can be seen as an area in which objects can be

perceived. At the same time all objects have a focus; that is, an area which they can
capture. Mutual overlaps between auras and foci determine mutual awareness of
objects (Benford and Fahlén, 1993) and can be seen as spatial context. Spatial
models are, in general, only used for synchronous group awareness, because
presence of several users at the same time is necessary. The group awareness is
mainly calculated based on the distance between objects and does not respect
individual interests of users.

The AETHER model can be seen as an extension of the spatial model; the
concepts of aura, focus and medium are also used, although in a slightly modified
manner. The AETHER model defines the relations between objects with a
semantical network (Sandor et al., 1997). The Model of Modulated Awareness
(MoMA) is based on a reaction-diffusion metaphor. This metaphor is based on the
idea that whenever two or more entities have contact their state is modified in some
way. Group awareness is produced and consumed through fields (Simone and
Bandini, 2002). Both models, AETHER and MoMA are rather sophisticated, but
have the disadvantage that their setup is complicated and that adaptation is hardly
possible.

ELVIN (Fitzpatrick et al., 1999) and NSTP (Patterson et al., 1996) are event
notification systems similar to our prior version of ENI—that is, they are
client/server infrastructures that capture events and present events regardless of the
context of origin and the users’ context of work.

In the area of knowledge management complex ontologies are used to model the
contexts of information seekers in order to improve search results. Whereas these
ontologies provide very detailed and adequate models, they are hard to adapt and,
therefore, too rigid for the support of dynamic group processes (Gross and Klemke,
2002).

Conclusions
In this paper we contributed a model, an implementation and an examination for the
contextualisation of awareness information. We believe that—as it has been said in
the area of global information systems like the WWW—in future it will not only be
important that information can be provided at all. Rather, one of the big challenges
will lie in the selection of the relevant information. In our opinion, awareness
contexts are an interesting step towards this direction.

The evaluation of the context model for the contextualisation of events from a
shared workspace system demonstrated the applicability of the model. But, it also
indicated that contextualisation requires a careful investigation of the application to
identify properties that permit a unique mapping of events to a context. In cases
where such properties cannot be identified, the presented approach allows a graded
mapping of events to a context.

Some future challenges are questions of the evolution of contexts. Questions
like: who will model awareness contexts; how will the evolution of these models be
supported; who will be allowed to change the model are very important for the
success of awareness contexts.

Further future challenges lie in the presentation of awareness information.
Because users are members of several awareness contexts and want to be informed
about several awareness contexts at the same time, we need mechanisms for merging
information from different awareness contexts and displaying it. This leads also to a
problem of prioritising awareness contexts; that is, it has to be constantly decided
which kind of information from which awareness context is to be displayed
immediately and which kind of information of which awareness context can be
displayed after a delay. Algorithms could calculate the current actuality of an
awareness context form information like the number of present users (in absolute
figures and relatively to the whole number of members of an awareness context), the
fluctuation of an awareness context, the frequency of changes to documents in an
awareness context (either with equally important documents or with a hierarchy of
importance of documents). Furthermore, the current awareness context a user is in,
will vastly influence the type of information to be displayed and also the means of
presentation.

Finally, we believe that contexts play a vital role for proper understanding of any
kind of information (cf. the above-mentioned first definition of context above). This
cannot only support persons who already share an awareness context, but also
newcomers because the awareness context can be used as guidance of the new
users.

Acknowledgements
The research presented here was carried out by the IST-10846 project TOWER,
partly funded by the EC. We would like to thank all our colleagues from the
TOWER team. In particular with thank our colleague Karl-Heinz Klein for the
implementation of the concepts presented in this paper and many useful discussions
on the applicability and usefulness of concept itself.

References
Abiteboul, Serge, Peter Bunemann, and Dan Suciu (1999): Data on the Web - From Relational to

Semistructured Data and XMLMorgan Kaufmann.
Agostini, A., G. de Michelis, M. Grasso, W. Prinz, and A. Syri (1996): Contexts, Work

Processes, and Workspaces. Computer Supported Cooperative Work: The Journal of
Collaborative Computing, vol. 5, no. 2-3, pp. 223-250.

Appelt, Wolfgang (1999). WWW Based Collaboration with the BSCW System SOFSEM'99,
Milovy, Czech Republic. Springer Lecture Notes in Computer Science 1725, pp. 66-78.

Begole, J., M.B. Rosson, and C.A. Shaffer (1999): Flexible Collaboration Transparency:
Supporting Worker Independence in Replicated Application-Sharing Systems. ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 6, no. 6, pp. 95-132.

Benford, Steve and Lennart Fahlén (1993). A Spatial Model of Interaction in Large Virtual
Environments In G. d. Michelis, C. Simone, and K. Schmidt (eds.): Third European
Conference on Computer Supported Cooperative Work - ECSCW ´93, Milan. Kluwer, pp.
109-124.

Cadiz, Jonathan, Gina Venolia, Gavin Jancke, and Anoop Gupta (2002). Designing and Deploying
an Information Awareness Interface Conference on Computer Supported Cooperative Work,
CSCW 2002, New Orleans. ACM Press.

Dourish, Paul and V. Bellotti (1992). Awareness and Coordination in Shared Workspaces In J.
Turner and R. Kraut (eds.): CSCW ´92 - Sharing Perspectives, Toronto, Canada. ACM
Press, pp. 107-114.

Erickson, T., D.N. Smith, W.A. Kellogg, M. Laff, and J.T. Richards (1999). Socially Translucent
Systems: Social Proxies, Persistent Conversation, and the Design of Babble. Proceedings of
the Conference on Human Factors in Computing Systems - CHI'99, Philadelphia, PE. ACM
press, pp. 72 -79.

Fitzpatrick, Geraldine, Tim Mansfield, Simon Kaplan, David Arnold, Ted Phelps, and Bill Segall
(1999). Augmenting the Workaday World with Elvin In S. Bødker, M. Kyng, and K.
Schmidt (eds.): ECSCW'99: Sixth Conference on Computer Supported Cooperative Work,
Copenhagen. Kluwer Academic Publishers, pp. 431-450.

Fitzpatrick, Geraldine, Sara Parsowith, Bill Segall, and Simon Kaplan (1998). Tickertape:
Awareness in a Single Line CHI'98: ACM SIGCHI Conference on Human Factors in
Computing, Los Angeles, CA. ACM Press.

Fuchs, Ludwin (1999). AREA: A cross-application notification service for groupware In S.
Bødker, M. Kyng, and K. Schmidt (eds.): ECSCW'99: Sixth Conference on Computer
Supported Cooperative Work, Copenhagen. Kluwer Academic Publishers, pp. 61-80.

Gross, Tom and Roland Klemke (2002). Context Modelling for Information Retrieval -
Requirements and Approaches In P. Isaias (ed.): Proceedings of the IADIS International
Conference - WWW/Internet 2002, Lisbon, Portugal. IADIS Press, pp. 247-254.

Gutwin, Carl and Saul Greenberg (1998). Design for lndividuals, Design for Groups: Tradeoffs
between Power and Workspace Awareness In S. Poltrock and J. Grudin (eds.): CSCW '98
Computer Supported Cooperative Work, Seattle, WA. ACM Press NY, pp. 207-216.

Gutwin, Carl, Mark Roseman, and Saul Greenberg (1996). A Usability Study of Awareness
Widgets in a Shared Workspace Groupware System In M. S. Ackermann (ed.): CSCW'96:
Conference on Computer Supported Cooperative Work, Boston, MA. ACM Press, pp. 258-
267.

Heath, C. and P. Luff (1991). Collaborative Activity and Technological Design: Task
Coordination in London Underground Control Rooms In L. Bannon, M. Robinson, and K.
Schmidt (eds.): Third European Conference on Computer Supported Cooperative Work,
Amsterdam. Kluwer, pp. 65-80.

Pankoke-Babatz, Uta and Anja Syri (1997). Collaborative Workspaces for Time Deferred
Electronic Cooperation In S. Hayne and W. Prinz (eds.): GROUP'97: International ACM
SIGGROUP Conference on Supporting Group Work, Phoenix, AZ. ACM Press, pp. 187-
196.

Patterson, John F., Mark Day, and Jakov Kucan (1996). Notification Servers for Synchronous
Groupware In M. S. Ackermann (ed.): Conference on Computer Supported Cooperative
Work (CSCW'96), Boston, MA. ACM Press, pp. 122-129.

Prinz, Wolfgang (1999). NESSIE: An Awareness Environment for Cooperative Settings In S.
Bødker, M. Kyng, and K. Schmidt (eds.): ECSCW'99: Sixth Conference on Computer
Supported Cooperative Work, Copenhagen. Kluwer Academic Publishers, pp. 391-410.

Rittenbruch, M. (1999). Atmosphere: Towards Context-Selective Awareness Mechanisms Human-
Computer Interaction: Communication, Cooperation and Application Design - HCI'1999,
Munich, Germany. Lawrence Erlbaum, Hillsdale, NJ.

Sandor, Ovidiu, Christian Bogdan, and John Bowers (1997). Aether: An Awareness Engine for
CSCW In H. Hughes, W. Prinz, T. Rodden, and K. Schmidt (eds.): ECSCW'97: Fifth
European Conference on Computer Supported Cooperative Work, Lancaster, UK. Kluwer
Academic Publishers, pp. 221-236.

Schmidt, Kjeld (2002): The Problem with Awareness: Introductory Remarks on Awareness in
CSCW. Computer Supported Cooperative Work: The Journal of Collaborative Computing
(Kluwer Academic Publ., Dordrecht), vol. 11, no. 3-4, pp. 285-298.

Simone, Carla and Stefania Bandini (2002): Integrating Awareness in Cooperative Applications
through the Reaction-Diffusion Metaphor. Computer Supported Cooperative Work: The
Journal of Collaborative Computing (Kluwer Academic Publ., Dordrecht), vol. 11, no. 3-4,
pp. 495-530.

Sohlenkamp, Markus, Wolfgang Prinz, and Ludwin Fuchs (2000): PoliAwac - Design and
Evaluation of an Awareness Enhanced Groupware Client. AI and Society - Special Issue on
CSCW, vol. 14, no. 1, pp. 31-47.

