
ORIGINAL RESEARCH

Towards a new human-centred computing methodology
for cooperative ambient intelligence

Tom Gross

Received: 22 June 2009 / Accepted: 26 September 2009 / Published online: 4 December 2009

� Springer-Verlag 2009

Abstract Cooperative ambient intelligence aims to

improve users’ work and private life by analysing their

current situation with a special focus on their social

interaction and to adapt the environment accordingly. As

technology is seen as highly embedded in physical

environments and the social fabric of users, a reconsid-

eration of methods for its design, implementation, and

evaluation is vital. In this paper we characterise cooper-

ative ambient intelligence, revisit existing methods, and

discuss what constitutes a novel human-centred comput-

ing methodology.

1 Introduction

Cooperative ambient intelligence is intrinsically human-

centred—it aims to improve users’ work and private life

through the creation of novel information and communi-

cation technology, and through the analysis of the users’

situation with a special focus on their social interaction as

well as adaptation of technology. It can be seen as a further

evolution of technological environments based on ubiqui-

tous computing technology towards support for both face-

to-face as well as remote communication and cooperation.

Several such evolutions of concepts of information and

communication technology have been witnessed over the

last decades. Thereby, the evolution of the interaction

concepts of the technology always goes hand in hand with

the evolution of the approaches, methods, and techniques

for the design, development, and evaluation of technolog-

ical innovation. The following two examples of Grudin,

and Boehm illustrate this co-evolution of technology and

processes for their development.

Grudin studied the evolution of the focus on user

interface research from the 1950s to the beginning of the

1990s. Grudin identified five foci of interface development:

interface as hardware in the 1950s used by engineers and

programmers; interface as software in the 1960s and 1970s

used by programmers; interface as terminal from the 1970s

to the 1990s used by end-users; interface as dialogue from

the 1980s onwards used by end-users; and interface as

work setting from the 1990s onwards used by groups of

end-users (Grudin 1990, p. 265). Grudin points out that ‘as

the focus shifts, the approaches to design and the skills

required of practitioners changes’ and ‘the principal focus

of activity in computer development has moved gradually

from hardware to software and is now shifting toward the

user interface. Corresponding shifts are present within the

domain of user interface research and development itself’.

And he continues that ‘this in turn has led to new

approaches to design and evaluation. And so it shall con-

tinue. We can extrapolate that new approaches, responding

to the user interface’s move into the workplace, will

require new skills, supplementing current approaches. They

may not graft easily—or at all—onto existing develop-

ment’ (Grudin 1990, p. 261).

Boehm introducing his spiral model specifically

emphasises the shift of the focus from software challenges

to end-users. He points out that the traditional waterfall

model had been suitable for traditional software applica-

tions, but not for later interactive applications. He writes

(1988, p. 63):

T. Gross (&)

Faculty of Media, Bauhaus-University Weimar,

Weimar, Germany

e-mail: tom.gross@medien.uni-weimar.de

123

J Ambient Intell Human Comput (2010) 1:31–42

DOI 10.1007/s12652-009-0004-4

‘The waterfall model’s approach helped eliminate

many difficulties previously encountered on software

projects. The waterfall model has become the basis

for most software acquisition standards in govern-

ment and industry. Some of its initial difficulties have

been addressed by adding extensions to cover incre-

mental development, parallel developments, program

families, accommodation of evolutionary changes,

formal software development and verification, and

stagewise validation and risk analysis. […] For some

classes of software, such as compilers or secure

operating systems, this is the most effective way to

proceed. However, it does not work well for many

classes of software, particularly interactive end-user

applications.’

The evolution characterised by Grudin and Boehm some

twenty years ago has continued. In particular, the trend

towards support for groups of end-users has continued in

computer-supported cooperative work for cooperative

applications based on the traditional desktop, and in social

software based on cooperative Web applications (Gross

and Fetter 2009). An even bigger step in the evolution is

the emergence of ubiquitous computing—Mark Weiser

(1993, p. 75), who coined the term ubiquitous computing,

writes that it ‘enhances computer use by making many

computers available throughout the physical environment,

while making them effectively invisible to the user’.

Ambient intelligence has additional characteristics such as

‘simple and effortless interactions, attuned to all our sen-

ses, adaptive to users and context-sensitive, and autono-

mous’ (Weber et al. 2005, p. 1). Ambient intelligence

requires that the environment is embedded, adapts to the

presence of people and objects, and assists users smartly

while preserving security and privacy. Ambient media

(Lugmayr et al. 2009) present information embedded in the

environment. And ambient intelligence supports human

contacts. Only recently, cooperative ambient intelligence

departs from social settings with the assumption that the

presence of a single person is possible, but that the pres-

ence of a group of persons is more likely and is the primary

focus (Markopoulos et al. 2005).

This continual evolution of the technology entails

questions on the nature of a fruitful evolution of the pro-

cesses for their design, development, and evaluation. We

explore questions subsequently. We start with a charac-

terisation of the evolution of technology until today. We

then analyse the approaches for the processes for design,

development, and evaluation. Finally, we introduce a

human-centred computing methodology in the form of a

software lifecycle for the design, development, and eval-

uation of cooperative ambient intelligence.

2 Towards cooperative ambient intelligence artefacts

In this section we characterise the evolution towards

cooperative ambient intelligence, and narrow the focus on

interactive systems providing functionality for end-users

who interact with the technology and through the tech-

nology (Baecker et al. 1995; Dix et al. 2004; Preece et al.

2007).

2.1 Traditional GUI and WIMP

After a first period of batch mode processing in the 1950s

and 1960s and a second of time-sharing in the 1970s, now

the third period of Windows-Icons-Menus-Pointing Devices

(WIMP) paradigm with the Graphical User Interface

(GUI) has been prevalent (van Dam 1997) ever since.

Software and hardware are based on keyboard, mouse, and

computer screens and their technical capabilities. The

WIMP and GUI often use a desktop metaphor and allow

users the direct manipulation of electronic artefacts—that

is, the system provides a continuous representation of the

electronic artefacts and the possible actions and users can

perform rapid, reversible, and incremental actions, and

get immediate feedback on them (Hutchins et al. 1985;

Shneiderman 1983). Considerable progress has been made

towards a better understanding of users and tasks, design

and implementation of computer software and hardware

technology, and evaluating it. Yet, human–computer

interaction is still a very active research field for academia

and industry likewise.

2.2 Ubiquitous computing

Ubiquitous computing is a different paradigm that goes

beyond the WIMP paradigm. Basically, ubiquitous has the

meaning of ‘existing or being everywhere at the same time:

constantly encountered: widespread’; and computing

comes from ‘to compute’ and is ‘to determine especially by

mathematical means\compute your income tax[; also: to

determine or calculate by means of a computer’ (Merriam-

Webster 2009). So, literally ubiquitous computing means

‘computing everywhere’. More specifically, Mark Weiser

(1993, p. 75), who coined the term ubiquitous computing,

writes:

‘The goal is to achieve the most effective kind of

technology, that which is essentially invisible to the

user. […] To bring computers to this point while

retaining their power will require radically new kinds

of computers of all sizes and shapes to be available to

each person. I call this future world ‘‘Ubiquitous

Computing’’ (UbiComp).’

32 T. Gross

123

Hand in hand with ubiquitous computing goes Calm

Technology as the paradigm for the interaction of users

with ubiquitous computing technology. According to

Weiser and Brown (1997, p. 79):

‘The most potentially interesting, challenging, pro-

found change implied by ubiquitous computing era is

a focus on calm. […] Calmness is a new challenge

that UC brings to computing. […] But when com-

puters are all around, so that we want to compute

while doing something else and have more time to be

more fully human, we must radically rethink goals,

context and technology of computer and all the other

technology crowding into our lives. Calmness is a

fundamental challenge for all technological design of

next fifty years.’

Abowd points out that ubiquitous research is experi-

mental and good research in this area should have a

motivating application and ‘should address scale (i.e.,

space covered, number of people involved, number and

variety of devices supported, amount of time over which an

application is run)’ and ‘should be subjected to real and

everyday use (Abowd 1999, p. 75). Also according to

Lyytinen and Yoo (2002, p. 64) the ‘main challenges in

ubiquitous computing originate from integrating large-

scale mobility with the pervasive computing functionality’.

So, ubiquitous computing entails requirements related to

mobile computing and its motivation to make devices more

capable of being physically moveable; and of pervasive

computing and its motivation to develop hand devices that

can capture information from its environment and envi-

ronments that can detect the nearby devices (Lyytinen and

Yoo 2002).

Abowd and Mynatt (2000) identify three core themes

that are being addressed in ubiquitous computing: natural

interfaces, context-awareness, as well as automated capture

and access to live experiences. Natural interfaces refer to

an interaction of users with the environment beyond key-

board, mouse, and computer screen that is increasingly

based on speech and gesture. Context-awareness allows

environments to capture the presence and activities of

users, to infer on these data, and to adapt accordingly.

Automated capture and access to live experiences provides

technology for capturing various types of media such as

projected slides and spoken language via multiple sensors,

smart merging of the streams captured, and flexible later

access.

So, to sum up the characterisation of ubiquitous com-

puting, thus far in this paper: realising the original vision of

Mark Weiser of ubiquitous computing entails a consider-

able amount of requirements relating to technology of

hardware and software and networks including mobility as

well as relating to the intuitive interaction of users with this

technology.

Beyond these technical and software engineering

aspects, also social and organisational issues are vital—

Lyytinen and Yoo (2002, p. 64) continue:

‘The shift toward ubiquitous computing poses mul-

tiple novel technical, social, and organisational

challenges. At the technology level, there are several

unresolved technical issues concerning the design and

implementation of computing architectures that

enable dynamic configuration of ubiquitous services

on a large scale. New challenges will also emerge in

terms of how one should design and develop ubiq-

uitous services. This may require rethinking of fea-

sible architectures, design ontologies and domain

models, requirements and interactions scenarios, and

analysing new families of non-functional require-

ments (such as configurability and adaptability).

Anticipated new ways of dynamically configuring

services will also shift the line between proactive

design and tailoring during use. Previously, unex-

plored challenges will also emerge at the border

between the technical and the social: some issues are

to be left outside the technical implementation to be

addressed by social negotiation and due process;

other issues should be addressed during technical

design. Finally, the emergence of truly integrated

sociotechnical systems will create a wide array of

research and policy issues that deal with social

organisation, impact, and the future of work, organ-

isations, and institutions.’

2.3 Ambient intelligence and social interaction

Ambient intelligence takes a strong focus on such social

and organisational issues and requires that the environment

is embedded, adapts to the presence of people and objects,

and assists users smartly while preserving security and

privacy. Abowd and Mynatt (2000) suggest everyday

computing as a new area of applications research. Based on

concepts and technology of the previously described

requirements, everyday computing suggests seeing tech-

nology as a ‘constant companion’ supporting continuous

interaction between users and the environment, allowing

for interruption and resumption and dealing with passages

of time. From an everyday computing perspective users’

activities have the following characteristics (Abowd and

Mynatt 2000, p. 42): (1) they rarely have a clear beginning

or end; (2) interruption is expected; (3) multiple activities

operate concurrently; (4) time is an important discrimina-

tor; and (5) associative models of information are needed.

Towards a new human-centred computing methodology 33

123

As a consequence, Abowd and Mynatt (2000, p. 45) sug-

gest the following research directions for ubiquitous com-

puting: (1) design for a continuously present computer

interface; (2) concept for the presentation of information at

various levels of the periphery of users’ attention; (3)

support for connections of the physical and virtual worlds;

and finally, but very importantly (4) methods for the sup-

port of developing such informal, peripheral, and oppor-

tunistic behaviour. Referring to the latter point, they

(Abowd and Mynatt 2000, p. 46) write: ‘there is no one

methodology for understanding the role of computers in

our everyday lives. However, combining information from

methods as different as laboratory experiments and eth-

nographic observations is far from simple’.

Taking care of this embeddedness is important and has

been particularly researched by Dourish (2001). That

means that on the one side the users and their social

interaction and on the other side the technology are

mutually embedded and interdependent. At the same time

there is synergetic potential if the social situation is ade-

quately understood, appropriate conclusions are taken, and

the technology adapts accordingly.

Cooperative ambient intelligence has a strong focus on

this embeddedness and can be defined as environments that

aim ‘to improve users’ work and private life by analysing

and adapting to the current situation with a special focus on

the social interaction among users’ (Gross 2008, p. 270).

As Gross (2008) points out, technology is continually

evolving and consequently its adaptation to users needs to

progress. There has been a constant evolution of foci

towards interactive systems: from single-user WIMP to

cooperative systems to single-user ubiquitous computing to

single-user ambient intelligence, and to cooperative ambi-

ent intelligence (cf. Table 1).

As mentioned above, there are challenges from a tech-

nical perspective, from a social perspective, and from an

organisational perspective. These challenges refer to the

concepts and environments per se as well as challenges

relating to adequate methods for those who develop such

concepts and environments. Whereas Gross (2008) pri-

marily addresses the consequences of these foci on tech-

nological challenges of cooperative ambient intelligence,

in the following we primarily address consequences on

methodological challenges.

3 Towards a human-centred computing methodology

Similar to the evolution of information and communication

technology, an evolution of the processes for developing

this technology is vital, and can be identified. The evolu-

tion of processes can be witnesses in two areas: software

engineering, and human–computer interaction. We first

characterise the relationship between usability and process

models, and then analyse the process models from software

engineering and from human–computer interaction.

3.1 Usability and processes

In general, usability refers to effective, efficient, and sat-

isfactory interaction of users with artefacts, from everyday

things such as furniture and appliances to advanced tech-

nology such as computer hardware and software (Norman

1988). The usability of software and hardware has been an

important topic in computer science, since the 1970s

(Hansen 1971). Many major associations of engineering

and computer science include usability in their suggestions

for curricula of computer science education at universities

[(e.g., the Institute of Electrical and Electronics Engine

IEEE has (Computer Society 2001), the Association of

Computing Machinery ACM in (ACM SIGCHI 2008), the

German Informatics Society GI has (Maass et al. 1996)].

Table 1 Summative overview of five foci with respect to time, key concepts awareness well as autonomous and adaptive behaviour

Single-user

WIMP

Cooperative

systems

Single-user

UbiComp

Single-user

AmbInt

Cooperative

AmbInt

Time 1970s 1980s 1990s 1990s 2000s

Key concepts Graphical user

interfaces; windows,

icons, menus,

pointing devices

Graphical user interfaces;

computer-based

communication, screen

sharing, tele-pointers

Vast availability of

embedded and mobile

technology; periphery of

user attention

Attuned to users’

senses; adaptivity

part of any

environment

Adaptivity to groups of users

part of any environment

Autonomous

and adaptive

behaviour

Adaptability

through user

customisation;

adaptivity of user

interface

Adaptability through

articulation works

support; adaptivity of

resource allocation

Adaptivity of

information and

functionality

Highly adaptive to

(mostly single-

users’) presence

and activities

Highly adaptive to presence

and activities of local and

remote groups, and to their

needs for local group

interaction and remote

group–group interaction

From (Gross 2008, p. 275)

34 T. Gross

123

And for usability, the process perspective is important. Jim

Foley writes (Preece et al. 2007, p. XI):

‘It is the process that I believe is the most important

part of UI design, and the hardest for technology-

oriented students to appreciate. […] When I first

started teaching a full semester-long HCI course to

computer science students about thirty years ago, I

spent much more time than now on details of inter-

action devices and interaction techniques and soft-

ware structures. That was at a time when GUIs were

just becoming popular, and students had limited

experience and exposure to their concepts, capabili-

ties, and underlying software architectures. While I

did preach ‘know thy user’, task analysis etc., I did

not spend enough time helping students really

understand how to do it, so their projects were often

too technology-centric rather than user-centric. […]

A well-known mantra is ‘‘users perform tasks using

computers.’’ This implies that the user interface

designer needs to know about users, tasks, and

computers. …learn about users and the tasks they

perform and then to apply that knowledge in creating,

evaluating, and refining designs that do indeed allow

users to perform their tasks.’

Despite the fact that it is rather easy to identify issues

with usability, it is difficult to design and implement usable

systems. Nielsen (1994, p. 23) writes: ‘in reality, different

users have different needs, and a system that is ‘‘friendly’’

to one may feel very tedious to another’. Therefore,

usability requires a good structure of the processes—that is,

a structured process, involving the actual users of the

system is essential for producing artefacts that have

usability (Nielsen 1992).

Good process models are vital for the development of

successful technology that is usable for their users. They

can traditionally be found in software engineering, but also

human–computer interaction.

3.2 Software engineering

The field of software engineering has a long tradition of

dealing with the organisation of processes for the devel-

opment of software. The traditional waterfall model, which

was initially published in 1970, already provided a detailed

list of steps to follow. The waterfall model of Royce [1987

(reprint from 1970)] suggested the phases: system

requirements; software requirements; analysis; program

design; coding; testing; and operation (cf. Fig. 1).

And—despite many rumours on the waterfall model

about lacking feedback loops—Royce already in the ori-

ginal paper pointed out that ‘the ordering of steps is based

on the following concept: that as each step progresses and

the design is further detailed, there is an iteration with the

preceding and succeeding steps but rarely with the more

remote steps in the sequence’ [1987 (reprint from 1970),

p. 328].

Later, Boehm published the famous ‘Spiral Model of

Software Development and Enhancement’ in Boehm

(1988). Boehm announced the spiral model with consid-

erable criticism for the waterfall model; he writes (Boehm

1988, p. 63):

‘However, even with extensive revisions and refine-

ments, the waterfall model’s basic scheme has

encountered some more fundamental difficulties, and

these have led to the formulation of alternative pro-

cess models. A primary source of difficulty with the

Fig. 1 Waterfall model.

Adapted from: [Royce 1987

(reprint from 1970), p. 330]

Towards a new human-centred computing methodology 35

123

waterfall model has been its emphasis on fully elab-

orated documents as completion criteria for early

requirements and design phases.’

The spiral model suggests to go through the phases in a

spiral from inside out and to continually expand the results

of each phase in each circle (Boehm 1988, p. 65):

‘Each cycle of the spiral begins with the identification

of the objectives of the portion of the product being

elaborated (performance, functionality, ability to

accommodate change, etc.); the alternative means of

implementing this portion of the product (design A,

design B, reuse, buy, etc.); and the constraints

imposed on the application of the alternatives (cost,

schedule, interface, etc.).’

3.3 Human–computer interaction

In the field of human–computer interaction and user-cen-

tred design also process models for the development of

interactive systems have been suggested. Despite the fact

that the basic goal is the same—that is, the organisation of

processes for the development of the system—there are

quite some differences. In fact, Stone et al. (2005, p. 16)

write:

‘User-centred design and traditional software engi-

neering take very different approaches to computer

system design. Traditionally, software developers

have treated each phase of the software design life

cycle as an independent part of software develop-

ment, which must be completely satisfied before

moving onto the next phase. This is particularly so in

relation to the classic life cycle (also known as the

waterfall model, so named because of the cascade

from one phase to another…).’

Yet, Stone et al. (2005, p. 16) also write that some

software engineers already saw the iterations:

‘In practice, however, the development stages overlap

and feed information to each other. During design,

problems with requirements are identified; during

coding, design problems are found; and so on. The

software process is not a simple linear model but

involves a sequence of iterations of the development

activities [Sommerville 1992, p. 7].’

And, so, Stone et al. summarise the difference between

user-centred design and software engineering as follows

(Stone et al. 2005, p. 16):

‘The essential difference between the classic life

cycle and user-centred interface design is that user

interface design and development is based on the

premise that users should be involved throughout the

design life cycle. Additionally, the process should be

highly iterative, so that the design can be tested (or

evaluated) with users to make sure it meets the users’

requirements.’

This distinction can best be seen in the ‘star life cycle’

(cf. Fig. 2) of Hartson and Dix. Introducing it, the authors

write (Hartson and Hix 1989, p. 52):

‘These results suggest a ‘star’ life cycle for human–

computer interface development […]. This star life

cycle, with evaluation at its centre, supports iterative

refinement and rapid prototyping. Because of its high

interconnectivity, it allows almost any ordering of

development activities and promotes rapid alternation

among them.’

The International Standardisation Organisation (ISO)

has developed several standards. Most important are the

ISO 9241 standard with the traditional title ‘Ergonomic

Requirements for Office Work with Visual Display Ter-

minals’ that has been partly renamed by ISO to ‘Ergo-

nomics of Human–System Interaction’ (ISO/IEC 2009)

primarily referring to qualities of the artefact, and the ISO

13407 standard with the title ‘ISO 13407: 1999—Human-

Centred Design Processes for Interactive Systems’ (ISO

2009) primarily referring to qualities of the process of

developing the artefact. This latter standard ISO 13407

names similar steps and requires that the overall process

iterates through these steps until the interactive system has

reached the required quality. The individual steps are

the identification of the need for human-centred design; the

understanding and specification of the context of use; the

specification of the user and organisational requirements;

the production of the design solutions; and the evaluation

of the design against the requirements (cf. Fig. 3).

So, overall in both software engineering and in human-

centred computing there are process models including

Fig. 2 Star life cycle. Adapted from: (Hartson and Hix 1989, p. 52)

36 T. Gross

123

multiple steps from analysis to design to implementation to

evaluation, with iterations between the steps and within

each individual step. These steps have been successfully

applied to single-user WIMP and cooperative systems over

decades. Yet, with the considerable shifts from single-user

WIMP and cooperative systems to ubiquitous computing

and cooperative ambient intelligence new and innovative

process models are needed.

4 Human-centred computing methodology

for cooperative ambient intelligence

Cooperative ambient intelligence is embedded in multi-

farious circumstances and contexts and needs to be

designed from a human-centred perspective. In this section

we present a novel process model based on the insight

gained from the preceding two sections: the evolution of

technology towards cooperative ambient intelligence and

the evolution of process models. We want to advance the

design, implementation, and evaluation processes to pro-

vide a basis for successful cooperative ambient intelli-

gence. We first revisit technology and its requirements

concerning process models; and then we develop a novel

process model for cooperative ambient intelligence.

4.1 Cooperative ambient intelligence

In the epilogue of (Weiser et al. 1999), John Seely Brown

(Weiser et al. 1999, p. 695) that Mark Weiser had a

transdisciplinary perspective on ubiquitous computing:

‘Is as much a study in phenomenology as it is of user

and community interface design […] boundaries

between the social and the technical, between the

artistic and the scientific, and between work and play

never existed.’

Weiser also commented methodological aspects; he

talks about the research method for ubiquitous computing

(Weiser 1993, p. 75) as follows:

‘The research method for ubiquitous computing is

standard experimental computer science: the con-

struction of working prototypes of the necessary

infrastructure in sufficient quantity to debug the via-

bility of the systems in everyday use, using ourselves

and a few colleagues as guinea pigs. This is an

important step towards insuring that our infrastruc-

ture research is robust and scalable in the face of the

details of the real world.’

Abowd and Mynatt particularly point to the new chal-

lenges that arise from the fact that the technology will be

available anytime and everywhere and facilitate distant

connections of people. This new permanent presence and

availability of other users and technology has great

advantages, but entails novel challenges for the design

(Abowd and Mynatt 2000, p. 31):

‘Today we are just starting to understand the impli-

cations of continuous immersion in computation. The

future will hold much more than constant availability

of tools to assist with traditional, computer-based

tasks. Whether we wear computers on our body, or

have them embedded in our environment, the ability

of computers to alter our perception of the physical

world, to support constant connectivity to distant

people and places, to provide information at our fin-

gertips, and to continuously partner with us in our

thoughts and actions offers much more than a new

‘‘killer app’’—it offers the possibility of a killer

existence.’

4.2 Human-centred computing

Putting users as human beings with their specific strengths

and weaknesses and with technological compensation in

terms of pushing the limits of the strengths and compen-

sating weaknesses in the centre of the focus is a vital

perspective. Jaimes et al. (2007, p. 31) write on this

human-centred computing (HCC):

‘HCC facilitates the design of effective computer

systems that take into account personal, social, and

cultural aspects and addresses issues such as infor-

mation design, human–information interaction,

human–computer interaction, human–human inter-

action, and the relationships between computing

technology and art, social, and cultural issues.’

So, from what has been identified so far, it is important

to take a human-centred computing perspective and orga-

nise the whole process of developing cooperative ambient

intelligence truly interdisciplinary, and to really make users

a part of the cooperative ambient intelligence and use it and

Fig. 3 ISO 13407: 1999–human-centred design processes for inter-

active systems. Adapted from: (ISO 2009)

Towards a new human-centred computing methodology 37

123

experience the short- as well as mid- to long-term conse-

quences and give feedback on them. Addressing these

human-centred computing challenges and providing a

methodology for it, is a great challenge that was already

tackled by the traditional Bauhaus in Weimar.

4.3 Lessons learned from the traditional Bauhaus

The traditional Bauhaus had the paradigm of bringing

creative and systematic approaches together into what the

founder Walter Gropius called ‘Neue Einheit von Kunst

und Technik’—a new unity, where the German word Kunst

can mean both arts and skill, and where the German word

Technik can mean both technique and technology. So, in

fact it is a real combination of arts and creative concepts,

with experience and knowledge on perceiving the world,

on the technology and on the basic materials, as well as

with a systematic organisation of the process (Lupfer and

Sigel 2005). The Bauhaus was founded in 1919 in Weimar

as a new kind of art school—an ‘art school of modern-

ism’—intended ‘to reconstruct the unity of art and the

culture of production that had broken down as a result of

industrialisation, to reintegrate art and life, to undo the

splintering of artistic genres, and thus to use art itself as an

instrument of cultural and social regeneration’ (Wick 2000,

p. 15).

The Bauhaus had a clear approach: to find prototypical

solutions; to systematise existent, and develop new tools,

techniques and materials; to develop concepts and meth-

ods; and to create an educational framework for the work

and the training of such a ‘new artist’. As mentioned

above, the Bauhaus was an art school intended to be a

testing field for prototypical solutions and to develop an

educational framework to support the elaboration of a

new profession concerned with the reintegration of art in

everyday life in order to develop an adequate aesthetic

culture of mass production from a human-centred per-

spective. The Bauhaus had two distinct phases. In the

early phase of the Bauhaus, its founding director Walter

Gropius proclaimed in 1919 the paradigm of art and

crafts, a new unity to create the living environments of a

new era (later called the Modernity) by collaborative

work of all art and crafts professions. In the further

development of the Bauhaus, this paradigm shifted in the

later phase towards a more technology-oriented focus. In

1923 Walter Gropius consequently proclaimed in the later

phase a modification into art and technology, a new unity

as an art-driven approach to socially embedded technol-

ogy taking the human being as well as society into

account, and to emphasise the importance of aesthetic in

every day life experience.

Overall the Bauhaus made: ‘outstanding contributions to

aesthetic education’ (2000, p. 15); ‘substantial contributions

to foundation of what we now generally characterise as

design’ (2000, p. 15); developments of new aesthetic and

functional concepts from artwork to every day products,

architecture and urban planning; and various artefacts that

embody and transport their aesthetic and functional concepts

from the well-known Bauhaus buildings to furniture and

print products.

What is similar between the traditional Bauhaus in

Weimar and today’s cooperative ambient intelligence is the

fact that building and construction have new challenges.

Whereas the Bauhaus was facing a new Zeitgeist of mod-

ernism, cooperative ambient intelligence faces new

unprecedented technological opportunities. For instance,

Kandinsky aimed at developing a dictionary [quote from

(Kandinsky 1955 (reprint from 1926), p. 90) translated in

(Lupton and Miller 1993, p. 23)]:

‘The progress won through systematic work will

create a dictionary which, in its further development,

will lead to a ‘‘grammar’’ and, finally, to a theory of

composition that will pass beyond the boundaries of

the individual art expressions and become applicable

to ‘‘Art’’ as a whole.’

4.4 Human-centred computing lifecycle

The Human-Centred Computing Methodology for Coop-

erative Ambient Intelligence tries to achieve this by com-

bining and extending the strengths of existing process

models (cf. Fig. 4). It departs from the need for cooperative

ambient intelligence—that is, the need for an environment

that provides smart functionality for the social interaction

in local as well as between remote groups based on ubiq-

uitous computing software and hardware.

Since cooperative ambient intelligence scenarios in

general include multiple stationary and mobile settings,

several analyses of the respective Situation of Use need to

be made and models for the respective situation need to be

developed [please note that here we use the term situation,

rather than context as in other process models, since here

we refer to the users’ situation, rather than the context in

terms of the boundary between the system and the envi-

ronment such as in (Sommerville 2007, p. 171)]. These

situation models need to represent both the statics of a

given setting including the users, their tasks, and their

physical environment as well as the dynamics of a given

setting in the form of adaptation results that the environ-

ment should make based on the users and their tasks.

Then, the User, Ambient, and Cooperation Require-

ments are specified. They again contain the statics as well

as the dynamic adaptation rules and heuristics based on the

respective situation and its changes measured by sensors in

the electronic and physical environment.

38 T. Gross

123

Software and Hardware Design Solutions are produced

that provide the functionality the users need for their

interaction with the technology and with each other

through the technology as well as the capturing of the data

of the environments.

Embedded Interaction and Adaptation Design Solutions

provide the means for embedded interaction of the users in

the respective surrounding.

All design solutions are evaluated in the Software and

Hardware Evaluation specific to the situation they are

situated in against the requirements of the respective

technology unit.

Based on successful individual evaluations, an inte-

grated evaluation of the design of the whole cooperative

ambient intelligence environment can take place in an

Overall Evaluation in Living Laboratory.

In the inner iteration cycle, these latter four steps—that

is, the production of the software and hardware design

solutions, the production of the embedded interaction and

adaptation design solutions, the specific evaluations, and

the overall evaluation—are all highly interwoven and

feedback and feedforward are very likely to occur between

them. This is the case since the different design solutions

can affect each other and can trigger the need for modifi-

cations; since the individual evaluations can affect both

types of design solutions (software and hardware); and

since the overall evaluation can affect the individual

evaluations as well as the overall embedded interaction and

adaptation design solutions.

Since the adaptations in cooperative ambient environ-

ments have considerable influence on the situation of use, it

is quite likely that after an overall evaluation the processes

need to be run again in the outer iteration cycle, starting

with an analysis of the Situation of Use. Once the overall

evaluation has produced a satisfactory overall result and

reaches the Specified User, Ambient, and Cooperation

Satisfaction, the process can terminate.

Overall all phases can take considerable time—yet, the

evaluation of the overall design in the living laboratory can

take by far the longest time, since this phase really aims to

gain long-term feedback of users that are really using the

cooperative ambient intelligence in their everyday life.

5 Discussion

This paper has introduced cooperative ambient intelli-

gence, it has elaborated on existing approaches for organ-

ising software engineering and user-centred design

processes, and it has suggested a new human-centred

computing methodology for cooperative ambient intelli-

gence. The individual phases of the human-centred life-

cycle have been broadly characterised.

Many research issues remain for each phase in terms of

the methods to be applied, the adaptation of the method

concerning the characteristics of the targeted technological

innovation, and the properties of the results of each phase.

The following list provides some suggestions for methods

and tools to be used in each phase:

• Understand Situation of Use in order to get a better

understanding of the situation of use, ethnography (and

particularly ethnomethologically informed ethnogra-

phy) can be applied (e.g., Crabtree et al. 2006; Intille

et al. 2005; Nova et al. 2005; Randall et al. 2007) for

studying the situation, and various approaches can be

taken for modelling the situation (e.g., Chalmers 2004;

Gross and Prinz 2004; Schmidt et al. 1999)

• Specify the User, Ambient, and Cooperation Require-

ments traditional methods from software engineering

Fig. 4 Human-centred

computing methodology for

cooperative ambient

intelligence

Towards a new human-centred computing methodology 39

123

(cf. Sommerville 2007) or later methods (e.g., UML

Fowler 2004 from the OMG 2009) can be used here

• Produce Software and Hardware Design Solutions:

middleware and software platforms can be used for

programming complex ambient software solutions

(e.g., Gaia, Ranganathan and Campbell 2003 or Sens-

ation, Gross et al. 2006); and since developing custom

hardware is often tedious standard hardware can be

used (e.g., Arduino, Arduino 2009 or Phidgets, Green-

berg and Fitchett 2001)

• Produce Embedded Interaction and Adaptation Design

Solutions editors can be used to prototype and configure

ambient scenarios [e.g., CollaborationBus (Gross and

Marquardt 2007), iCAP (Sohn and Dey 2003), or

jigsaw (Humble et al. 2003)]; living laboratories can be

used for producing complex environments [e.g., MIT’s

Oxygen Project (Mitchel 2004), or Philips’ HomeLab

(Philips 2008)]; such living laboratories need to go

beyond the traditional phase models [including also the

rational unified process; cf. (Sommerville 2007, p. 82)]

• Perform Software and Hardware Evaluation: tools can

be used to evaluate the functionality of the technology

developed [e.g., Momento (Carter et al. 2007)]; and

methods have been introduced to address the specifics

of ambient technology (e.g., heuristic evaluation by

Mankoff et al. 2003)

• Perform Overall Evaluation in Living Laboratory:

living laboratories have become prominent in many

institutions [e.g., see the European Network of Living

Laboratories (ENoLL 2009)]; the approach of living

laboratories promises innovative ways of participatory

design and evaluation in real-life scenarios, helping to

address multifarious ambient evaluation areas (a broad

range of evaluation areas can be found in Scholtz and

Consolvo 2004)

This list shows that in each steps of our lifecycle there

has been research and development; and specific methods

and tools are already available. There has also been some

work towards a better understanding of the overall picture

of human interaction in physical and mixed-reality settings.

For instance, (Hornecker and Buur 2006) developed a

framework addressing the following four themes: tangible

manipulation (i.e., material representations of artefacts);

spatial interaction (i.e., existence and movements in real

space); embodied facilitation (i.e., influence of real space

on behaviour); and expressive representation (i.e., system’s

properties for tangible interaction). Such contributions can

be highly complementary to the processes, methods, and

tools described in this paper.

Yet, it is clear that in this emerging field of cooperative

ambient intelligence more research is needed from

many directions—top-down with broad contributions of

frameworks of embodiment, human-centred computing

methodology, and technology platforms and environments;

but also bottom-up with solid individual methods and tools.

With this paper we aim to provide a broad contribution

towards a human-centred methodology for cooperative

ambient intelligence targeting at the big picture. Covering

more details of our lifecycle would be important, but goes

beyond the scope of this paper.

Acknowledgments I would like to thank all the members of the

Cooperative Media Lab—special thanks to Christoph Beckmann,

Mirko Fetter, Arkadiusz M. Frydyada de Piotrowski, Stefanie Koch,

Thilo Paul-Stueve, and Maximilian Schirmer for inspiring

discussions.

References

Abowd GD (1999) Software engineering issues for ubiquitous

computing. In: Proceedings of the 21st international conference

on software engineering—SE’99 (Los Angeles, CA). IEEE

Computer Society Press, Los Alamitos, pp 75–84

Abowd GD, Mynatt E (2000) Charting past, present, and future

research in ubiquitous computing. ACM Trans Comput Hum

Interact 7(1):29–58

ACM SIGCHI (2008) ACM SIGCHI curricula for human–computer

interaction. http://sigchi.org/cdg/. Accessed 13 October 10 2008

Arduino (2009) Ardiuno—HomePage. http://www.arduino.cc/. Accessed

18 September 2009

Baecker RM, Grudin J, Buxton WAS, Greenberg S, eds (1995)

Readings in human–computer interaction: toward the year 2000,

3rd edn. Morgan Kaufmann Publishers, San Francisco

Boehm BW (1988) A spiral model of software development and

enhancement. IEEE Comput 21(5):61–72

Carter S, Mankoff J, Heer J (2007) Momento: support for situated

Ubicomp experiments. In: Proceedings of the conference on

human factors in computing systems—CHI 2007 (April 28–May

3, San Jose, CA). ACM, NY, pp 125–134

Chalmers MA (2004) Historical view of context. Comput Support

Cooper Work J Collab Comput 13(3–4):223–247

Computer Society (2001) Computer curricula 2001—appendix A CS

body of knowledge. IEEE & ACM, http://www.sigcse.org/resources/

cs-2001/appendixa/?searchterm=Computer%20Curricula%202001%

20-%20Appendix%20A%20CS%20Body%20of%20Knowledge.

Accessed 18 September 2009

Crabtree A, Benford S, Greenhalgh C, Tennent P, Chalmers M,

Brown B (2006) Supporting ethnographic studies of ubiquitous

computing in the wild. In: Proceedings of the conference on

designing interactive systems—DIS 2006 (June 26–28, Univer-

sity Park, PA). ACM, NY, pp 60–69

Dix A, Finlay J, Abowd GD, Beale R (2004) Human–computer

interaction. Pearson, Englewood Cliffs

Dourish P (2001) Where the action is: the foundations of embodied

interaction. MIT Press, Cambridge

ENoLL (2009) Open living labs—the European network of living labs.

http://www.openlivinglabs.eu/. Accessed 18 September 2009)

Fowler M (2004) UML distilled: a brief guide to the standard object

modelling language. Addison-Wesley, Reading

Greenberg S, Fitchett C (2001) Phidgets: easy development of

physical interfaces through physical widgets. In: Proceedings of

the ACM symposium on user interface software and technol-

ogy—UIST 2001 (November 11–14, Orlando, FL). ACM, NY,

pp 209–218

40 T. Gross

123

http://sigchi.org/cdg/
http://www.arduino.cc/
http://www.sigcse.org/resources/cs-2001/appendixa/?searchterm=Computer%20Curricula%202001%20-%20Appendix%20A%20CS%20Body%20of%20Knowledge
http://www.sigcse.org/resources/cs-2001/appendixa/?searchterm=Computer%20Curricula%202001%20-%20Appendix%20A%20CS%20Body%20of%20Knowledge
http://www.sigcse.org/resources/cs-2001/appendixa/?searchterm=Computer%20Curricula%202001%20-%20Appendix%20A%20CS%20Body%20of%20Knowledge
http://www.openlivinglabs.eu/

Gross T (2008) Cooperative ambient intelligence: towards autono-

mous and adaptive cooperative ubiquitous environments. In:

International journal of autonomous and adaptive communica-

tions systems (IJAACS), vol 1, suppl 2, pp 270–278

Gross T, Fetter M (2009) Computer-supported cooperative work. In:

Stefanidis C (ed) The universal access handbook, vol 43.

Lawrence Erlbaum Associates, Hillsdale, NJ, pp 1–22

Gross T, Marquardt N (2007) CollaborationBus: an editor for the easy

configuration of ubiquitous computing environments. In: Pro-

ceedings of the fifteenth Euromicro conference on parallel,

distributed, and network-based processing—PDP 2007 (February

7–9, Naples, Italy). IEEE Computer Society Press, Los Alamitos,

pp 307–314

Gross T, Prinz W (2004) Modelling shared contexts in cooperative

environments: concept, implementation, and evaluation. Comput

Support Cooper Work J Collab Comput 13(3–4):283–303

Gross T, Egla T, Marquardt N (2006) Sensation: a service-oriented

platform for developing sensor-based infrastructures. Int J

Internet Protoc Technol (IJIPT) 1(3):159–167

Grudin J (1990) The computer reaches out: the historical continuity of

interface design. In: Proceedings of the conference on human

factors in computing systems—CHI’90 (April 1–5, Seattle, WA).

ACM, NY, pp 261–268

Hansen W (1971) User engineering principles for interactive systems.

In: Proceedings of the fall joint computing conference—

FJCC’71 (December, Montvale, NJ). AFIPS Press, Washington,

pp 523–532

Hartson HR, Hix D (1989) Human–computer interaction develop-

ment: concepts and systems for its management. ACM Comput

Surv 21(1):5–92

Hornecker E, Buur J (2006) Getting a grip on tangible interaction: a

framework on physical space and social interaction. In:

Proceedings of the conference on human factors in computing

systems—CHI 2006 (April 22–27, Montreal, Canada). ACM,

NY, pp 437–446

Humble J, Crabtree A, Hemmings T, Akesson K-P, Koleva B,

Rodden T, Hansson P (2003) Playing with the bits—user-

configuration of ubiquitous domestic environments. In: Fifth

international conference on ubiquitous computing—UbiComp

2003 (October 12–15, Seattle, WA). Springer, Heidelberg,

pp 256–264

Hutchins EL, Hollan JD, Norman DA (1985) Direct manipulation

interfaces. Int J Hum Comput Interact 1:311–338

Intille SS, Larson K, Beaudin JS, Nawyn J, Tapia ME, Kaushik P

(2005) Late breaking result: a living laboratory for the design

and evaluation of ubiquitous computing technologies. In:

Extended abstracts of the conference on human factors in

computing systems—CHI 2005 (April 2–7, Portland, OR).

ACM, NY, pp 1941–1944

ISO (2009) ISO 13407: 1999—human-centred design processes for

interactive systems. ISO—International Organisation for Stan-

dardisation, http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=21197. Accessed 18 Septem-

ber 2009

ISO/IEC (2009) ISO 9241-1: 1997—ergonomic requirements for

office work with visual display terminals—part 1: general

introduction. ISO—International Organization for Standardiza-

tion, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=21922. Accessed 18 September 2009

Jaimes A, Gatica-Perez D, Sebe N, Huang TS (2007) Human-centred

computing: towards a human revolution. IEEE Comput

40(5):30–34

Kandinsky W (1955) Punkt und Linie zu Flaeche (Point and Line to

Plain; in German). Freiburger Graphische Betriebe, Freiburg

(reprint from 1926)

Lugmayr A, Risse T, Stockleben B, Laurila K, Kaario J (2009)

Semantic ambient media—an introduction. Multimedia Tools

Appl 44(3):337–359

Lupfer G, Sigel P (2005) Walter Gropius, 1883–1969: the promoter of

a new form. Taschen, Cologne

Lupton E, Miller JA (eds) (1993) The ABC of triangle, square, and

circle: the Bauhaus and design theory. Thames & Hudson Ltd,

London

Lyytinen K, Yoo Y (2002) Issues and challenges in ubiquitous

computing. Commun ACM 45(12):63–65

Maass S, Ackermann D, Dzida W, Gorny P, Oberquelle H, Roediger

K-H, Rupietta W, Streitz N (1996) Recommendations for

software ergonomics education in informatics curricula at

german universities. German Informatics Society GI. http://

www-cg-hci.informatik.uni-oldenburg.de/GI-Recommendations/

. Accessed 18 September 2009

Mankoff J, Dey AK, Kientz J, Lederer S, Ames M (2003) Heuristic

evaluation of ambient displays. In: Proceedings of the Confer-

ence on Human Factors in Computing Systems—CHI 2003

(April 5–10, Minneapolis, Minnesota). ACM, NY, pp 169–176

Markopoulos P, de Ruyter B, Privender S, van Breemen A (2005)

Case study: bringing social intelligence into home dialogue

systems. ACM interactions, pp 37–45

Merriam-Webster I (2009) Merriam-Webster Online. http://www.

m-w.com/. Accessed 13 March 2009

Mitchel K (2004) MIT project oxygen. Computer Science and

Artificial Intelligence Laboratory. http://oxygen.lcs.mit.edu/.

Accessed 19 March 2008

Nielsen J (1992) The usability engineering life cycle. IEEE Comput

25(3):12–22

Nielsen J (1994) Usability engineering. Academic Press, London

Norman DA (1988) The psychology of everyday things. Basic Books,

NY

Nova N, Girardin F, Dillenbourg P (2005) ‘Location is not enough!’:

an empirical study of location-awareness in mobile collabora-

tion. In: Proceedings of the IEEE international workshop of

wireless and mobile technologies in education—WMTE 2005

(November 28–30, Tokushima, Japan). IEEE Computer Society

Press, Los Alamitos, pp 21–28

OMG (2009) Object management group—UML. http://www.omg.

org/. Accessed 18 September 2009)

Philips (2008) Philips Research—HomeLab. Koninklijke Philips

Electronics NV, http://www.research.philips.com/technologies/

misc/homelab/index.html. Accessed 19 March 2008

Preece J, Rogers Y, Sharp H (2007) Interaction design: beyond

human–computer interaction. Wiley, NY

Randall D, Harper R, Rouncefield M (2007) Fieldwork for design:

theory and practice. Springer, Heidelberg

Ranganathan A, Campbell RH (2003) A middleware for context-

aware agents in ubiquitous computing environments. In: Pro-

ceedings of the ACM/IFIP/USENIX international middleware

conference—Middleware 2003 (June 16–20, Rio de Janeiro,

Brazil). Springer, Berlin, Germany, pp 143–161

Royce WW (1987) Managing the development of Larage software

systems. In: Proceedings of the ninth international conference on

software engineering—ICSE’87 (March 30–April 2, Monterey,

CA). IEEE Computer Society Press, Los Alamitos, (reprint from

1970). pp 328–338

Schmidt A, Beigl M, Gellersen H-W (1999) There is more to context

than location. Comput Graph J 23(6):893–902

Scholtz J, Consolvo S (2004) Toward a framework for evaluating

ubiquitous computing applications. IEEE Pervasive Comput

3(2):82–88

Shneiderman B (1983) Direct manipulation: a step beyond program-

ming languages. IEEE Comput 16(8):57–69

Towards a new human-centred computing methodology 41

123

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21197
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21197
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21922
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21922
http://www-cg-hci.informatik.uni-oldenburg.de/GI-Recommendations/
http://www-cg-hci.informatik.uni-oldenburg.de/GI-Recommendations/
http://www.m-w.com/
http://www.m-w.com/
http://oxygen.lcs.mit.edu/
http://www.omg.org/
http://www.omg.org/
http://www.research.philips.com/technologies/misc/homelab/index.html
http://www.research.philips.com/technologies/misc/homelab/index.html

Sohn T, Dey AK (2003) Interactive poster: iCAP: an informal tool for

interactive prototyping context-aware applications. In: Extended

abstracts of the conference on human factors in computing

systems—CHI 2003 (April 5–10, Fort Lauderdale, Florida).

ACM, NY, pp 974–975

Sommerville I (1992) Software engineering, 4th edn. Addison-

Wesley, Reading

Sommerville I (2007) Software engineering 8. Pearson Education

Limited, Harlow

Stone D, Jarrett C, Woodroffe M, Minocha S (2005) User interface

design and evaluation. Morgan Kaufmann Publishers, San

Francisco

van Dam A (1997) Post-WIMP user interfaces. Commun ACM

40(2):63–67

Weber W, Rabaey JM, Aarts E (eds) (2005) Ambient intelligence.

Springer, NY

Weiser M (1993) Some computer science issues in ubiquitous

computing. Commun ACM 36(7):75–84

Weiser M, Brown JS (1997) The coming age of calm technology. In:

Denning PJ, Metcalfe RM (eds) Beyond calculation: the next

fifty years of computing. Springer, NY, pp 75–85

Weiser M, Gold R, Brown JS (1999) The origins of ubiquitous

computing research at PARC in the late 1980s. IBM Syst J Spec

Issue Pervasive Comput 38(4):693–696

Wick RK (2000) Teaching Bauhaus. Hatje Cantz Publishers, Ostfild-

ern-Ruit

42 T. Gross

123

	Towards a new human-centred computing methodology �for cooperative ambient intelligence
	Abstract
	Introduction
	Towards cooperative ambient intelligence artefacts
	Traditional GUI and WIMP
	Ubiquitous computing
	Ambient intelligence and social interaction

	Towards a human-centred computing methodology
	Usability and processes
	Software engineering
	Human-computer interaction

	Human-centred computing methodology �for cooperative ambient intelligence
	Cooperative ambient intelligence
	Human-centred computing
	Lessons learned from the traditional Bauhaus
	Human-centred computing lifecycle

	Discussion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

