
MatchBase:
A Development Suite for Efficient Context-Aware Communication

Tom Gross, Simone Braun, Susanne Krause
Faculty of Media

Bauhaus-University Weimar
Bauhausstr. 11

99423 Weimar, Germany
<firstname.lastname>(at)medien.uni-weimar.de

Abstract

In distance communication, there is—despite
technical progress in information and communication
technology—still an asymmetry and tension between
the contacter who spontaneously wants to approach the
contactee over distance, and the contactee who wants
to avoid inappropriate disruption. We have designed
and developed MatchBase—a development suite for
efficient context-aware communication. Context-aware
communication aims to use computer hardware and
software to mediate communication between contacters
and contactees according to their actual context, where
the contacters’ context refers to their current situation
and their motivation to initiate the communication and
where the contactees’ context refers to their current
situation and availability. In this paper we present the
concept and the implementation of the MatchBase
development suite.

1 Introduction

Spontaneous communication and coordination among
remote parties is a challenge. There are various
approaches, but most of them have unwanted side-effects:
having pre-arranged meetings is often too inflexible for
spontaneous interaction; sending email via computers or
short messages via mobile phones in general leave it
unclear when to expect a reply; and calling somebody on
the phone fails when the person is unavailability or
uninterruptible—despite the increased reachability with
mobile phones.

Thus in distant communication, despite technical
progress in information and communication technology,
there is still an asymmetry and tension between the
contacter who spontaneously wants to approach the
contactee over distance, and the contactee who wants to
avoid inappropriate disruption.

Context-aware communication aims to mediate the
communication between contacters and contactees
according to their actual context, where the contacters’

context refers to their current situation and their
motivation to initiate the communication, and where the
contactees’ context refers to their current situation and
availability. In order to make computer-mediated
communication efficient and context-aware systems need
to meet several requirements; they need to (1) analyse the
contactors’ contexts, (2) analyse the contactees’ contexts,
(3) match these contexts in order to minimise the
contacters’ effort and minimise the contactees’
interruption, and (4) adapt the mediation according to the
inferred match.

In the research fields of computer-supported
cooperative work (CSCW) and computer-mediated
communication (CMC) several concepts and tools for
social interaction in distributed groups have been
developed. In particular, instant messaging systems
provide presence and availability information in order to
facilitate coordination, and ad-hoc conversations among
distributed online users [11, 18]. However, only few
approaches consider the contactees’ contexts, and none
consider the contacters’ contexts to adapt mediation.

In mobile and ubiquitous computing (UbiComp)
context-aware systems capture information about the
environment of a user in order to adapt accordingly [4].
For instance, a mobile personal digital assistant can scan
its environment for printers, and inform its user about
printing opportunities in the vicinity [2]. Yet, these
systems mostly focus on the interaction between single
users and their personal environment.

We have designed and developed MatchBase—a novel
development suite for efficient context-aware
communication systems—that goes beyond existing
approaches from CSCW, CMC, and UbiComp. The
MatchBase suite consists of: MBSens—a sensor
component with various software and hardware sensors;
MBMatch—an inference engine processing the captured
information; and MBAct—an actuator component with
various actuators that adapt the behaviour of the user’s
applications according to the inference results.

In this paper we first give a brief overview of related
work. We then present the concept and the
implementation of the MatchBase suite. Finally, we
draw conclusions.

2 Related Work

Prior work that is related and relevant for our approach
of context-aware communication can mainly be found in
interruptive communication and can be grouped into
work on sensors, heuristic models, and strategies for
dealing with interruption.

2.1 Sensors

Systems managing interruptive communication
depend on sensors capturing user information to infer on
their situation or context (e.g., about their environment,
their workplace, their current tasks).

Basically, hardware sensors capture information from
the physical world with devices such as cameras, or
microphones; and software sensors capture information
from the user’s computer.

A feasibility study by Hudson et al. [15] investigated
the usefulness and reliability of sensors to estimate
interruptibility. On the basis of audio and video
recordings sensors were simulated for testing the
effectiveness of sensor combinations and of statistical
models. The work has shown that interruptibility
estimation based on sensor data achieves quite accurate
results. Fogarty et al. [6] examined the strength of
different sensors for the inference of a user’s
interruptibility. Speech was detected, door and phone
states were captured, and motion was captured. Several
software sensors captured keyboard and mouse events,
and active and non-active windows on the user’s
computer. It was shown that by the use of sensors
predictions of a user’s interruptibility can be made, and
that the user’s work environment and task influence the
selection of sensors.

2.2 Heuristic Models

Heuristic models offer further methods to provide
information for mediating interruptive communication.

One simple but powerful approach is the analysis and
detection of rhythms or temporal patterns of user
behaviour by observing their daily work behaviour. The
analysis of activity and location rhythms is described in
[1, 12] and focused on the detection of recurring periods
of inactivity and location transition. The presented
algorithm detected when a person usually arrived at the
workplace, had lunch, or left the office. From these
patterns inferences about a user’s presence and
availability at the workplace were made. This
information was then used to automatically set the user
status in an instant messaging tool [10].

A more complex model of heuristics is the analysis of
a person’s context. One system applying patterns to
predict users’ contexts is the Coordinate system [14]. It
aimed to improve communication by forecasting users
future presence and availability. It supplied enhanced
presence information—for instance, for absent users the

approximate time of return was posted on a shared
calendar, and their incoming messages could be forwarded
(e.g., to their mobile phone). The prediction was based
on observed data like conversations, meeting states,
keyboard and mouse events, and day of week and time of
day.

2.3 Strategies for Dealing with Interruption

Depending on the location of the responsibility for
the interruption, two strategies can be identified:
contacter responsibility, and system responsibility.

The f i rs t s t ra tegy—that i s , contacter
responsibility—is applied in social translucent systems.
They provide the contacter with information gained by
different sensors on the contactee’s side and let the
contacter decide whether a contact initiation is
appropriate.

For instance, the MyVine system used this approach
[7]. Speech, location, computer activity, and calendar
entries were analysed. From these data the system tried to
derive the person’s presence and availability. The system
then provided the communication partners with
information on the other’s presence and availability, and
suggested suitable communication channels.
Unfortunately, the results of a test showed that the
system often failed in avoiding unwanted interruptions.

A further social translucent system is MyTeam,
which provided availability information based on sensor
data [17]. Availability information included users’
presence as well as their activity. Keyboard and mouse
sensors, network connection sensors, and an active badge
sensor system were deployed. Sensor data collection
worked independently from the client itself—so, even if
the client was not running, sensor data could be
collected. Different colours representing presence and
availability presented the main information.
Additionally, different icons reflected a user’s activity
(e.g., a computer icon indicated keyboard or mouse
activity; or a busy icon indicated ‘do not disturb’). In a
pilot study the users reported that they liked the
information about who was at hand, and following from
that the decision of the best communication channel.
Some difficulties were reported because of forgotten
active badges, which resulted in false information about a
user’s presence.

The second strategy—that is, system responsibil-
ity—uses sensors to detect users’ interruptibility and to
automatically enable or disable communication on the
contacters’ side.

For instance, BusyBody [13] detected users’
interruptibility by calculating their cost of interruption
with the use of Bayesian networks based on parameters
like mouse events, window states, applications, time of
day, day of week, speech detection, and calendar
information. The cost of interruption was defined as the
willingness to pay to avoid unwanted interruptions.
From the calculated cost of interruption the system
decided whether an interruption is appropriate.

3 Concept

As discussed in the previous section, current
computer-mediated communication systems mainly
analyse the contactee’s situation and leave the decision to
the contacter. In MatchBase we aim to improve the
overall efficiency of communication by supporting
context-aware communication that regards interruption
improvement as bipartite issue concerning both contacter
and contactee.

In MatchBase efficient communication works as
follows: each participant is equipped with various
sensors. When contacters initiate communication—say
they send an email or instant message—the system
requests and calculates information on the contacter, the
contactee, and the message to determine the most
efficient communication strategy. The matching
component is fed with the respective information and
calculates a Degree of Efficiency (DOE). The DOE
determines the further behaviour of the system: if the
DOE is high, the message is delivered immediately; and
if the DOE is low the message is held back until the
system detects an appropriate time for delivery.

This general context-aware communication approach
of MatchBase works for any type of technologically
mediated communication such as email, instant
messaging, phone calls, or short messages. Yet,
currently the supported communication channels are
limited to email and instant messages.

In the following we will describe the concepts of the
contacter, the contactee, and the matching. Please note
that in reality the MatchBase suite supports groups of
users with changing roles, where users are sometimes
contacters and sometimes contactees. The distinction
between contacter and contactee is made for a better
elaboration and description of the concept.

3.1 Contacter

For the contacter several factors—related to the
message and the person—determine the efficiency of
communication.

The messages types can be question, answer, or
information. For email, a sensor can observe if the user
uses the ‘Reply’ or ‘New’ button, or another sensor can
analyse email subjects. For instant messages, a sensor
can analyse the text in the body of the message.

The message urgency is difficult to determine. A
sensor can analyse the text. Another sensor can analyse
calendar entries and try to infer the urgency (e.g.,
message exchange between two participants of an
upcoming meeting is likely to be urgent).

The message complexity is defined as the contactee’s
effort to answer the message. To determine the
complexity several parameters have to be considered. The
message type may be influencing the complexity as well
as the matter of the message: a question is inherently

more complex than an answer or an informational email,
and a programming request can also be very complex.

The message matter is the topic. To examine the
matter of a message several sensors can be used and
combined, such as text analysis of the message subject
and/or its content. The matter of the message can be
compared with the current task of the contactee. If these
two parameters match, a message may be delivered rather
quickly, because this message does not cause a context
switch on contactee’s side.

The relation to the contactee is the social connection
of the contacter to the contactee. The message matter can
provide some insight on the relation. For instance, if the
contacter and the contactee are co-workers on a project or
in a group, the matter may be a theme regarding this
project or group.

3.2 Contactee

For the contactee several factors influence the
efficiency of communication, some of which overlap
with the factors of the contacter. Obvious and subtle
indicators can examine the contactee’s interruptibility.

The obvious indicators are, for instance, if the
contactee is already in a conversation (phone and face-to-
face) or in a meeting. Sensors for obtaining obvious user
information are phone and speech sensors. If users are
talking on the phone or have visitors in their office, they
are most likely not willing to accept other incoming
requests. Conversations can be detected and mapped to a
specific user, if the user has a private office.

Depending on the work environment and the personal
habits of the user, the door status can provide important
information. For instance, some people close their office
door, if they do not want to be disturbed.

A majority of users is not open for incoming
requests, if they are in a meeting. Therefore, sensors
utilising data from the user’s calendar are suitable to
verify, if the user is currently in a meeting.

Subtle indicators are the users’ workload, and other
information that can indirectly be derived from running
applications and open documents. The user’s workload
can be inferred from the types of running applications.
For instance, programming applications typically require
considerable attention. Consequently, integrated
development environments (IDEs) can be classified as
requiring high attention. On a whole, if the majority of a
user’s open applications are classified as ‘high attention’,
we assume that the user currently is not open for
interruptions.

The active and front-most application and documents
also provide information on the current task . For
instance, if the front-most application is a word
processor the current task could be identified as
‘producing a document’. In combination with other open
documents’ names it may be possible to identify the
current task. For instance, if the open document is called
‘matchbase_concept.doc’ and if one of the user’s projects

is called ‘MatchBase’ there is a high probability that the
user is writing a project document.

A further aspect to consider is the relation to the
c o n t a c t e r . For instance, communication from
supervisors may have a higher priority for students than
from other students; or communication from the manager
may have a higher priority than from co-workers.
Sensors for contact management applications and address
books can provide this information.

3.3 Matching

In order to achieve improvement of the efficiency of
communication, the gained information of the
communication partners has to be compared and matched.
For comparison and matching the type of parameter is
important: we distinguish absolute from relative
parameters.

Absolu te parameters only refer to one
communication partner, and their individual preferences.
They can be determined independently of the
communication partner. For instance, the importance and
urgency of a message is related to the contacter; and the
interruptibility is related to the contactee. In order to
balance these factors we introduce the parameter Cost of
Enforcement (COE) on the contacter’s side, and Cost of
Interruption (COI) on the contactee’s side. We define
COE as the willingness to pay to enforce the delivering
of a message in Euros. Similarly, COI is defined as the
willingness to pay to avoid an interruption in Euros. For
each message users are then asked to specify their CEO
and COI respectively.

Relative parameters influence each other and can be
compared with each other. For instance, the message
matter on the contacter’s side can be compared with the
current task on the contactee’s side. Relative parameters
include on the contacter’s side the message matter, the
message complexity, and the relation to the contactee;
and on the contactee’s side the current task, and the
relation to the contacter.

When calculating the DOE , absolute and relative
parameters need to be treated differently: absolute
parameters are left as they are; relative parameters are
weighted and influence absolute parameters positively,
negatively, or not at all. Examples of positive influence
are: if the message is of low complexity; if the
contacter’s message matter and the contactee’s current
task are related; or if the participants have a strong social
relation.

The system reacts based on the calculated DOE. The
DOE is scaled into five values: very high, high,
medium, low, and very low. So, the actuator delivers
messages with a DOE from medium to very high with
different kinds of alerts; and holds back messages with a
low or very low DOE. Furthermore, fine-grained
reactions are offered (e.g., specific sounds and visual
alerts aim to attract the contactee’s attention for efficient
messages).

Besides the decision when and in which way to deliver
messages, it has also to be considered, when to deliver
delayed messages. Czerwinski et al. [3] found that a
favourable moment for an interruption is between two
tasks—when the actual task is completed, and a new task
is not yet started. So, in MatchBase messages on hold
are delivered on task shifts. Since users typically switch
tasks frequently it is not necessary to define a maximum
delay time for messages.

Furthermore, not only a system reaction on the
contactee’s side is needed, but also on the contacter’s
side. The contacter is informed about what happened
with the message sent on contactee’s side—that is, if the
message reached the contactee or was held back. In the
case that the contactee is offline, the matching
calculation is not necessary and the system provides the
contacter the information that the contactee is
unreachable.

4 Implementation

MatchBase suite was implemented on Mac OS X 10.3.8
using Java VM 1.4.2 and AppleScript version 1.9.3. The
MBMatch inference engine was implemented in Java; the
MBSens sensor components, and the MBAct actuator
components were partly implemented in Java and partly
in AppleScript.

In the following the overall architecture of
MatchBase, as well as details on the MBSens sensor
components, the MBMatch inference engine, and the
MBAct actuator components are presented.

4.1 Matching Architecture

The MatchBase architecture was developed with the
Sens-ation platform [8] and the PRIMI [9] platform.
Sens-ation is a service-oriented platform, which provides
tools for developers of context-aware, sensor-based
infrastructures. The SensBase reference implementation
is used. It offers various interfaces such as SOAP, XML-
RPC, HTTP, and sockets for storing and accessing
sensor values. PRIMI is an open platform that provides
software developers with support for the implementation
of novel concepts for instant messaging infrastructures.
The PRIMIBase reference implementation provides plug-
ins for protocols and graphical user interfaces and basic
platform services for logging and awareness.

We use SensBase for communication handling and
data storage. Also the matching component is integrated
into SensBase. PRIMIBase is used as instant messaging
infrastructure. The architecture of the MatchBase suite is
a client-server-model (cf. Figure 1).

The client side consists of two main parts: MBSens,
the sensor components collecting data about the user and
composed of the sensors, as well as MBAct, the actuator
components controlling and manipulating the email and
instant messaging applications.

The M B S e n s components monitor several
applications and are autonomous applications
implemented in AppleScript. Additionally, several
sensors are integrated in PRIMIBase. Most sensors
continuously gather data and send them via XML-RPC
calls to SensBase where they are stored. The email and
instant message sensors only send data when incoming
or outgoing messages occur.

The MBAct components control several applications.
For instance, they control the Apple Mail application via
AppleScript. Additionally, in order to control instant
messages, an MBAct Java component is integrated into
PRIMIBase.

The SensBase/MBMatch server manages all sensors;
each sensor is registered with a unique sensor identifier.
For easy handling of incoming sensor values, each value
is declared as a string data type. In case the sensor
provides complex information, the data is formatted as an
XML string. This facilitates the subsequent data
extraction and preparation for the matching. Java objects
are serialised to XML and deserialised from XML with
the XStream library [21]. Finally, the server stores all
received data in a MySQL database.

When the contacter sends a message, the MBAct
components react to outgoing messages by notifying the
server via XML-RPC calls, but do not intervene in the
regular email or instant message transport. That means
that emails are sent to the contacter’s SMTP-server,
which transmit them to the contactee’s SMTP-server,
and then in the respective user’s email inbox. Similarly,
instant messages are delivered to the OpenIM-server,
which redirects them to the contactee. On the contactee’s

side MBAct controls all incoming emails by
continuously monitoring the email inbox, and it controls
all incoming instant messages by monitoring the traffic.
New email or instant messages are held back until their
matching results are available. When the contacter sends
a message, the MBAct component pushes the server. The
server then triggers the MBMatch matching component
internally. MBMatch extracts all necessary data from the
database and matches the preferences of both
communication partners by calculating a DOE for the
occurring interruption. The DOE is further provided as
sensor. MBAct actuators—of both contacter and
contactee—continuously poll this DOE sensor via XML-
RPC, and then execute the appropriate action on the held
back messages on the contactee’s side and inform the
contacter about the results of the message delivery
(please note that we do not consider the cost of attention
of this contacter notification in our calculation). An
overview of the workflow of the system on an occurring
interruption situation is shown in Figure 2.

In the following the sensor component MBSens, the
matching component MBMatch, and the MBAct actuator
component are presented in detail.

4.2 MBSens

MatchBase offers hardware sensors capturing
information about the users’ physical environment, and
software sensors capturing information about the users
computer and its processes.

Five hardware sensors have been implemented: door,
phone, movement, and speech sensors.

Figure 1. MatchBase system architecture.

The door sensor gives information about the actual
state of a door—that is, if it is closed or opened. The
phone sensor indicates if the phone receiver is hang up
or lifted up. Both are realised with a simple reed switch,
one at the door and one at the receiver. Reed switches are
sufficient for detecting binary states. The reed switches
are connected with an Atmel AVR Microcontroller
ATmega8L. It registers the state of the door and the
phone respectively (circuit closed or not) and translates

them to an 8-bit signal. The signal is sent to the
computer via an RS232 serial interface. At the computer
MBSens detects and processes the information. The
microcontroller continuously sends the states of the door
and the phone. A thread listens to the serial port, which
is implemented with the RXTX library [16], a native
library providing serial and parallel communication for
the Java. If the state changes, the actual state of the door
and phone are sent to the server via XML-RPC.

The movement sensor detects motion in a range of
eight meters. It is realised with the Embedded Sensor
Board (ESB) [5]. The ESB combines various sensors for
motion, temperature, vibration, and luminosity. It offers
communication via a serial interface, infrared, and
GSM/mobile phones. The ESB is connected via a serial
interface to the computer. MBSens handles these data,
and submits changes in movement to the server.

The speech sensor determines whether users are
present and talking. Any microphone can be used—either
internal microphones of computers, or external USB
microphones. The incoming audio stream is analysed in
real-time by an MBSens speech sensor, which was
developed in Java based on the Sphinx-4 speech
recognition system [19] and which is integrated in
PRIMIBase. In order to distinguish conversations from
ambient noise, a threshold of 30 seconds is used—that
is, only audio signals with a duration of more than 30
seconds are considered as conversations. Furthermore, we
defined a five seconds threshold for breaks between words
and sentences and a ten second threshold to identify the
end of conversations. In our experiments, detection
works well with this configuration. For our approach it
is sufficient to determine if conversation takes place or
not—we do not record audio streams nor recognise words
or sentences of conversation.

Several software sensors have been implemented:
they mostly capture information about applications and
the operating system either via AppleScript, or via
standard UNIX terminal commands.

An email sensor monitors incoming and outgoing
emails of the Apple Mail application. It is implemented
as a small AppleScript application monitoring the Apple
Mail application. When a user sends or receives an
email, the names of the sender and recipient are logged.
With a simple text analysis of the subject and content
the message type and message matter are analysed.
Additionally, the title of the email subject and the names
of eventually attached files are stored.

The instant message sensor is notified when a
message arrives or is sent. It is a Java component
integrated into PRIMIBase. It generates an XML-string
containing information about the contacter, the
contactee, the message type, and the message matter; and
transfers them to the server.

A relation sensor is an AppleScript application that
parses all entries of the Apple Address Book application.
It extracts the name, email address, and nickname for
instant messaging of the owner as well as of any other

Figure 2. MatchBase workflow.

existing entries. This sensor sends its data once a day to
the server, because frequent chances are not likely to
occur or are not vital for our purposes.

The presence sensor is a Java component in
PRIMIBase that captures the users’ login and logout
behaviour as well as status changes, and automatically
sends changes to the server.

A meeting and tasks sensor parses entries in the
Apple iCal calendar application. It is implemented as a
small AppleScript application analysing calendar data.
Events including their title, location, start and end times,
and participants as well as tasks including their priority
can be extracted. Furthermore, these sensors can analyse
if events are full-day meetings; if they are confirmed,
cancelled, or only tentative; and if they are repetitive.
These data are sent only once a day. Yet, the in-meeting
sensor examines if at a certain moment a meeting entry
can be found in the calendar.

An applications sensor retrieves all open
applications. It executes the UNIX terminal command ps
and returns all running processes with their executable
name, percentage of CPU, memory usage, accumulated
CPU time, state, and the time the process started.
Additionally, the System Events application is used to
determine the front most (active) and visible application,
as well as the open documents of each application.
System Events provides the name, path, format and kind,
creation time and last modification, owner, and privileges
of documents.

The mouse idle sensor and CPU usage sensor are
implemented as UNIX terminal commands. The mouse
idle sensor is a binary sensor indicating whether mouse
input has been recognised during the last ten seconds.
For this purpose, the UNIX terminal command
ioreg –c IOHIDSystem is continuously executed and
the idle time is filtered. If the gained period is greater
then ten seconds, it is detected as idle and the server is
notified. For the CPU usage sensor the UNIX terminal
command top is executed every minute. The CPU usage
value of the user, the system, and idle are filtered and
sent to the server.

4.3 MBMatch

MBMatch is the matching component of the
MatchBase suite and is a separate package integrated into
the SensBase server.

When a user sends an email or instant message the
server is notified by an XML-RPC call triggered by
MBAct. With this call further information like sender,
recipient, and a unique identifier for message
identification are transmitted and the matching is
initiated. First, the actual sensor data of the contacter and
contactee have to be extracted from the database via an
SQL query. If the contactee is online, the matching starts
and the preferences of both communication partners are
inferred by the use of Weka machine learning
environment [20]. The sensor data are prepared, and fed

into Weka. Weka calculates the COE of the contacter,
the COI of the contactee, and the overall DOE. The
obtained values together with further information like the
associated unique message identifier are provided to the
contacter and contactee as a separate sensor, which can be
requested by a XML-RPC call. Lacking current data of
contactees indicates that they are offline and consequently
no matching can be done. In this case, only the contacter
is informed about the absence of the contactee and that
the message will arrive when the contactee uses the
email or instant messaging application the next time.

4.4 MBAct

Besides the initiation of the matching when an email
or instant message is sent, the MBAct components
monitor and manipulate the Apple Mail application and
the PRIMIBase application.

The MBAct components are responsible for the
reaction to the acquired result on the client side. They
continuously poll the DOE sensor for new results
through an XML-RPC request at the server.

MBAct components control incoming messages. In
the case of Apple Mail, MBAct hides newly arrived
emails—it marks them as read and moves them to a
separate mailbox. In the case of PRIMIBase, MBAct
simply holds new instant messages back, and stores
them separately. Furthermore, MBAct disables all sounds
and visual alerts in both cases.

If the sender of the message is not a participant of
MatchBase, the message is delivered right away, because
no matching can be done. This indeed means that in
some cases contacters who use standard email and instant
messaging applications without the MatchBase extension
are privileged, since in any case their email is delivered
right away. For future scenarios, this effect could be
counter-balanced by introducing white-lists for
MatchBase users and black-lists for non-users that might
mark, delay, or block messages of non-users per default.

Once the matching result for a message is available,
the MBAct components execute the appropriate actions.
If the message has a very high DOE, the message is
displayed—that is, for Apple Mail MBAct moves the
email back to the inbox and marks it as unread, it
activates sounds and visual signs, and a popup window
informs the contactee about the new message. If the
DOE is high, the message is also displayed with sounds
and visual signs. If the DOE has a medium value, the
message is only displayed with a visual sign. In the case
of a low and very low DOE, the message is still delayed.
These latter messages are not delivered until the actuator
components detect the end of the user’s current task. For
this purpose the running applications are monitored. If
one is quit, it is assumed that the user has finished a task
and that it is a favourable moment to deliver delayed
messages.

And, finally, MBAct notifies the contacter of the
delivery of the email message.

5 Conclusions

In this paper we have presented the design and
implementation of the MatchBase suite consisting of
MBSens sensor components, MBAct actuator
components, and the MBMatch inference engine.

On a whole MatchBase provides convenient building
blocks for developers of context-aware communication
systems. It allows fast and easy development of context-
aware communication systems.

In this paper we could not explain the details of the
matching and machine learning aspects: the page limit
given did not allow for covering that.

Acknowledgments

We thank Tareg Egla and Christoph Oemig, and the
Cooperative Media Lab (CML) students for contributing
to the concepts and implementation of MatchBase; and
the anonymous reviewers for valuable comments.

References

1 . Begole, J.B., Tang, J.C., Smith, R.B. and Yankelo-
vich, N. Work Rhythms Analysing Visualisations of
Awareness Histories of Distributed Groups. In Proceed-
ings of the ACM 2002 Conference on Computer-Sup-
ported Cooperative Work - CSCW 2002 (Nov. 16-20,
New Orleans, LO). ACM, 2002. pp. 334-343.

2 . Chalmers, M. A Historical View of Context. Computer
Supported Cooperative Work: The Journal of Collabo-
rative Computing 13, 3-4 (Aug. 2004). pp. 223-247.

3 . Czerwinski, M., Cutrell, E. and Horvitz, E. Instant
Messaging: Effects of Relevance and Timing. In Pro-
ceedings of the 14th Annual Conference of the British
HCI Group - HCI 2000 (Sept. 5-8, Sunderland, UK).
ACM, 2000.

4 . Dey, A.K. and Mankoff, J. Designing Mediation for
Context-Aware Applications. ACM Transactions on
Computer-Human Interaction 12, 1 (Mar. 2005). pp.
53-80.

5 . ESB. Sensorboards Documentation. Freie Universitaet
Berlin, Germany, http://www.inf.fu-berlin.de/inst/ag-
tech/scatterweb_net/esb/index.shtml, 2005. (Accessed
19/10/2005).

6 . Fogarty, J., Hudson, S.E. and Lai, J. Examining the
Robustness of Sensor-Based Statistical Models of Hu-
man Interruptibility. In Proceedings of the Conference
on Human Factors in Computing Systems - CHI 2004
(Apr. 24-29, Vienna, Austria). ACM, 2004. pp. 207-
214.

7 . Fogarty, J., Lai, J. and Christensen, J. Presence versus
Availability: The Design and Evaluation of a Context-
Aware Communication Client. Human-Computer Stud-
ies 61, 3 (Sept. 2004). pp. 299-317.

8 . Gross, T., Egla, T. and Marquardt, N. Sens-ation: A
Service-Oriented Platform for the Development of Sen-
sor-Based Infrastructures. International Journal of In-
ternet Protocol Technology (IJIPT) (accepted).

9 . Gross, T. and Oemig, C. PRIMI: An Open Platform for
the Rapid and Easy Development of Instant Messaging

Infrastructures. In Proceedings of the 31st
EUROMICRO Conference on Software Engineering and
Advanced Applications - SEAA 2005 (Aug. 30-Sept. 3 ,
Oporto, Portugal). IEEE Computer Society Press,
2005. pp. 460-467.

10. Gross, T. and Oemig, C. PRIMInality: Towards Human-
Centred Instant Messaging Infrastructures. In Mensch
& Computer - 5. Fachuebergreifende Konferenz - M&C
2005 (Sept. 4-7, Linz, Austria). Oldenbourg, 2005. pp.
71-80.

11. Gross, T. and Prinz, W. Modelling Shared Contexts in
Cooperative Environments: Concept, Implementation,
and Evaluation. Computer Supported Cooperative
Work: The Journal of Collaborative Computing 13, 3-
4 (Aug. 2004). pp. 283-303.

12. Hill, R. and Begole, J.B. Activity Rhythm Detection
and Modelling. In Extended Abstracts of the Confer-
ence on Human Factors in Computing Systems - CHI
2003 (Apr. 5-10, Fort Lauderdale, Florida). ACM,
2003. pp. 782-783.

13. Horvitz, E., Koch, P. and Apacible, J. BusyBody: Cre-
ating and Fielding Personalised Models of the Cost of
Interruption. In Proceedings of the ACM 2004 Confer-
ence on Computer-Supported Cooperative Work -
CSCW 2004 (Nov. 6-10, Chicago, IL). ACM, 2004.
pp. 507-510.

14. Horvitz, E., Koch, P., Kadie, C.M. and Jacobs, A. Co-
ordinate: Probabilistic Forecasting of Presence and
Availability. In Proceedings of the Eighteenth Confer-
ence on Uncertainty and Artificial Intelligence (Aug. 1-
4, Edmont, Alberta, Canada). Morgan Kaufmann Pub-
lishers, 2002. pp. 224-233.

15. Hudson, J.M., Fogarty, J., Atkeson, C.G., Abrahami,
D., Forlizzi, J., Kiesler, S., Lee, J. and Yang, J. Pre-
dicting Human Interruptibility with Sensors: A Wizard
of Oz Feasibility Study. In Proceedings of the Confer-
ence on Human Factors in Computing Systems - CHI
2003 (Apr. 5-10, Minneapolis, Minnesota). ACM,
2003. pp. 257-264.

16. Jarvi, T. RXTX: Serial and Parallel I/O Libraries Sup-
porting Sun's CommAPI. http://www.rxtx.org/, 2005.
(Accessed 19/10/2005).

17. Lai, J., Yoshihama, S., Bridgman, T., Podlaseek, M.,
Chou, P. and Wong, D. MyTeam: Availability Aware-
ness Through the Use of Sensor Data. In Proceedings of
the Nineth IFIP TC.13 International Conference on
Human-Computer Interaction - INTERACT 2003 (Sept.
1-5, Zurich, CH). IOS Press, 2003. pp. 503-510.

18. Nardi, B.A., Whittaker, S. and Bradner, E. Interaction
and Outeraction: Instant Messaging in Action. In Pro-
ceedings of the Conference on Computer-Supported
Cooperative Work - CSCW 2000 (Dec. 2-6, Philadel-
phia, PE). ACM, 2000. pp. 79-88.

19. Walker, W.F., Lamere, P., Kwok, P., Raj, B., Singh,
R., Gouvea, E., Wolf, P. and Woelfel, J. Sphinx-4: A
Flexible Open Source Framework for Speech Recogni-
tion. Sun Microsystems, http://research.sun.com/
techrep/2004/smli_tr-2004-139.pdf, 2005. (Accessed
19/10/2005).

20. Witten, I.H. and Frank, E. Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann Publishers, 2000.

21. XStream. XStream - About XStream. http://xstream.
codehaus.org/, 2005. (Accessed 19/10/2005).

