
RobustTrav: NAT Optimisation for the RobustCooperation Suite

Christoph Beckmann, Tom Gross, Ferdinand Kastl
Human-Computer Interaction Group

University of Bamberg
96047 Bamberg, Germany

<fistname>.<lastname>(at)uni-bamberg.de

Abstract

Cooperative systems supporting remote teams are
based on distributed software architectures. Underneath
most of these architectures is the Internet Protocol ver-
sion 4 (IPv4), which acts as technological backbone. De-
spite its strengths, the IPv4 also entails challenges for
developers of such systems for getting system messages
through firewalls without increasing latency and bringing
delays for users. In this paper we introduce the
RobustCooperation Suite for communication, coordina-
tion, and collaboration, as well as its RobustTrav mecha-
nism for effective and efficient NAT traversal.

1 Introduction

The Internet has for decades provided the technological
backbone for cooperative systems supporting social inter-
action among remote teams. In its current form, the Inter-
net Protocol version 4 (IPv4) has limitations, which will
be partly solved in the next Internet Protocol version 6
(IPv6). For instance, IPv6 allows direct connections with-
out mapping of the addressing of inbound and outbound
packets in the Network Address Translation (NAT) layer.
Yet IPv4 is still predominant in all networks. Currently, in
IPv4 servers typically have publicly routed addresses,
while clients may reside in private networks and are con-
nected to the Internet through routers via NAT [9]. It gen-
erally allows client-initiated connections, but prevents
inbound connections. This impedes direct client-to-client
connections (e.g., for file transfers) and server-initiated
push notifications.

Since cooperative systems require flexible communica-
tion between servers and clients and among clients, a va-
riety of NAT traversal mechanisms route between net-
works. For instance, port mapping performed by NAT
routers maps specific ports on their public IP address to
specific client ports in the private network. The mapping
can either be created manually or by an automated method
(e.g., using the Universal Plug and Play-based IGD proto-
col [19]). However, manual modifications of router and
firewall configurations reduce convenience and flexibility,
and employing automated methods may raise security
concerns. Long polling is a method that allows a client to
receive notifications from a server [15]. The client initi-
ates a connection that remains idle until the server has a

notification for the client. After a notification is sent, the
connection is closed and a new one is established imme-
diately. This reduces the communication overhead of poll-
ing, where the client is regularly requesting new notifica-
tions and receives an empty response if the server has
none. However, compared to true push long polling still
has a considerable overhead.

In this paper we introduce the RobustCooperation Suite
for communication, coordination, and collaboration and
its RobustTrav mechanism for effective and efficient
NAT traversal. We first describe related work. We then
give an architectural overview of the RobustCooperation
Suite. We present the RobustTrav NAT traversal mecha-
nism, and the RobustTravOpt optimisation. We conclude
with lessons learned.

2 Background and Related Work

In this section we glance at related research on NAT
traversal mechanisms, performance of NAT traversal, its
measuring, and groupware and awareness support.

2.1 NAT Traversal Mechanisms

NAT traversal mechanisms leverage on the advantages
of Network Address Translation (NAT) and improve the
connectivity of the nodes. NAT per se allows building
private networks with efficient routing of inbound and
outbound traffic. It also increases the overall amount for
participating network nodes.

NAT traversal mechanisms have been successfully ap-
plied in peer-to-peer systems. Peers are network nodes
that act and exchange data as clients and servers likewise.
Each node can relay for exchanging data, participate with-
in the network as a super node and assist in discovering
other nodes and network addresses. For instance, a recent
evaluation of the prominent peer-to-peer infrastructure
Skype [18] has shown that 3 relay nodes are required to
guarantee a 99.9% success rate of 60 minutes calls [1].
This high reliability requires considerable bandwidth and
processing of the peers.

The Autonomous NAT Traversal method [12] allows to
address clients behind a NAT system by manipulating
ICMP packages directed to the public IP-address of the
system. It uses the ICMP ECHO RESPONSE messages
for embedding payload data. Since some NAT implemen-
tations ensure the correspondence of ICMP ECHO
REQUEST messages and ICMP ECHO RESPONSE mes-

sages, the described method cannot reliably send arbitrary
messages to clients nor pass firewalls.

The Universal Plug and Play (UPnP) mechanism [19]
is based on the above mentioned port mapping and allows
applications running on clients to open a public port
through which it is available for incoming connections.
On request the client advertises the public port as com-
munication channel and it listens on the internal port for
incoming connections. This mechanism is powerful and
allows the seamless integration of NAT environment
within distributed systems. However, port mapping to
multiple clients behind a NAT router requires that the
node outside knows the public IP-address and specific
port of each client it wants to address.

The AJAX-Push mechanism (also known as Server
Push or Comet [15]) was the first wide-spread implemen-
tation of the above mentioned long polling mechanism. It
extends the polling mechanism, which has been used in
early Web applications, for pushing data to clients. Long
polling uses asynchronous requests from the Web browser
to the server. As the Web browser initiates the request, it
can pass its enclosing NAT environment and receive new
data from the server as soon as it is available. This mech-
anism generates considerable overhead compared to true
push.

2.2 Performance of NAT Traversal

Literature on the performance of NAT traversal is rare.
The AJAX-Push mechanism was initially proposed to
leave incoming connections open and alive. Increasing
incoming asynchronous requests (i.e., each collaborating
client uses an own request) cause significant load for the
server. Improved implementations (e.g., using jetty [3])
introduced the continuation approach, which handles in-
coming requests as separate threads on the server and puts
them to sleep immediately after receiving the incoming
connection. On notification the server wakes up the corre-
sponding connection threads, sends the data as a reply,
and closes the connection. Evaluations of the Autonomous
NAT Traversal method have shown that nearly 50% of the
clients could be reached using the ICMP ECHO
REQUEST messages, while 70% of the hosts were in
NAT environments. A possible solution to reach all net-
work hosts, making some hosts relays for others, would
increase the processing and management overhead. While
this method might have performance advantages due to
fast UDP communication, it is limited in its reliability.

2.3 Measuring NAT Performance

Measuring the performance of NAT traversal mecha-
nisms mainly focuses on the loss of messages passed
through NAT environments and the latency of messages
passed through the traversal mechanism.

The NAT/Firewall Traversal Cost Model [2] proposes
performance measurements. They are analysed by meas-
uring the performance of three traversal mechanisms:
HTTP, Relaying, and Virtual Private Networks. As the
individual mechanisms differ in their performance, the
model focuses on measuring latency for the easy quantisa-
tion and comparability of results. Latency is not linearly
proportional to event size, rather the resulting latency

from a publisher of events to a subscriber is the sum of all
occurring individual point-to-point latencies. Additional-
ly, for measuring NAT traversal performance, it is chal-
lenging to setup a NAT simulation. For obtaining reliable
results, the authors simulate a NAT infrastructure by
combining virtual machines running NAT services. For
our performance measurement and optimisation we also
use this approach.

2.4 Groupware and Awareness Support

Several groupware and awareness support systems aim
to provide users with innovative concepts for social inter-
action and mutual information. Yet they face challenges
with the underlying network infrastructure.

The NESSIE environment [14] as a groupware and
awareness service offers a generic distributed infrastruc-
ture for sensing events and notifying actuators on the oc-
currence of events. Events are sent directly to a central
server via a HTTP and CGI API. Events get to actuators
either via push or pull. The NESSIE environment requires
public addressable clients for pushing events to indicators.

The extended GROOVE groupware [5] provides a cli-
ent application for cooperation, coordination, and collabo-
ration. Specialised events can be generated and distributed
to attached clients. The events are first sent to a central
Web service and then distributed to desktop and mobile
clients via SOAP messages. While this approach leverag-
es on easy publish and subscribe it also lacks mechanisms
to distribute SOAP-messages to clients within NAT envi-
ronments or behind firewalls.

The Web-based Groupware Service-Oriented Architec-
ture (WGWSOA) [11] provides a middleware for group-
ware applications using a service-oriented architecture
(SOA). The middleware services within this distributed
system implement specialised business logic and are an-
nounced using the SOA mechanisms. The architecture
implements standard services for coordination, coopera-
tion, and communication, which can be shared. Group-
ware applications built with it benefit form standardised
APIs, however the services use pull connections and
therefore lack scalability due to frequent polling.

The PPPSpace Media Space environment [7] is an
awareness support system. It provides concepts and an
implementation for permanent capturing, persistent stor-
ing, and parallel processing and distributing awareness
information as well as video views to distant spaces.
Within the PPPSpace sensors capture events and send
them to a central server using XML-RPC [20]. The central
server notifies interested actuators for presenting aware-
ness information relying on a persistent XML-RPC con-
nection. While the PPPSpace offers parallel notification of
clients, it does not provide mechanisms for reaching cli-
ents within a NAT environment.

3 The RobustCooperation Suite

The RobustCooperation Suite supports the social inter-
action of remote teams and consists of a set of distributed
client and server software components. It provides func-
tionality for communication, coordination, and data shar-
ing. A sensor-based event processing captures, stores, and
communicates events among all components.

3.1 RobustCooperation Suite Architecture

The RobustCooperation Suite is based on a client-
server architecture with clients and a central server (cf.
Figure 1).

Figure 1. UML component diagram of the Robust-
Cooperation Suite.

The RobustCooperationClient consists of RCIM,
RCCal, and RCSpace).

RCIM uses XMPP [16, 17] to provide users with mutu-
al presence information and online communication. Users
can manage a list of contacts and receive their availability
and status information. Online users can exchange instant
text messages. They can also conveniently transfer files
and folders to selected online contacts. Furthermore,
RCIM provides advanced concepts for capturing and dis-
tributing events about users and their activities and for
presenting them to selected online contacts. A variety of
sensors for capturing events can be dynamically integrat-
ed into RCIM via a plugin mechanism. For privacy pro-
tection users have fine-grained control over who receives
their events; and for interruptability management users

can specify from whom they receive events and at what
refresh rate their view updates.

RCCal is a calendaring application that allows sharing
calendars among users. RCCal and RCIM use and inte-
grated contact management—changes to the contact list
are synchronised between the two applications, sensor
notifications are used to coordinate synchronisation of
visibility settings and the detail levels of information (cal-
endar events, presence and availability information) that is
shared. Calendars are managed with CalDav. RobustCal
also has an interface to a shared workspace, where users
can manage and share documents organised into work-
spaces.

RCSpace is a Web-based frontend to the shared work-
space. Using the Web-frontend, users can access project
documents in a Web-browser, without special client soft-
ware.

The RobustCooperationServer contains four software
components. The RCIMServer uses XMPP based on
Openfire [10], and provides services for instant messaging
as well as user authentication and management. The
RCSensServer is based on the sensor-based platform
Sens-ation [8], and aggregates and broadcasts events cre-
ated in all parts of the suite. The RCSensServer also does
the event handling for the RCIMServer. RCCalServer is a
CalDav [4] server stores and handles calendars and calen-
dar events. RCSpaceServer is based on BSCW [13] and
stores and handles shared workspaces and documents and
manages access rights.

3.2 RobustCooperation Suite and Traversal
Challenges

The RobustCooperation Suite provides users with ad-
vanced concepts for social interaction, but faces challeng-
es with the underlying network technology. In this section
we illustrate typical challenges that arise in the deploy-

«system»!
RobustCooperationServer!

«system»!
RobustCooperationClient!

!
!!
!

«component»!
RCSensServer!

!
!

«component»!
RCCalServer!

!
!

!
!!
!

«component»!
RCIMServer!

«component»!
RCSpaceServer!

!
!

«component»!
RCSpace!

!
!

«component»!
RCIM!

!
!

«component»!
RCCal!

!
!

Figure 2. Deployment diagram of the RobustCooperation Suite exemplifying traversal challenges.

ment of the RobustCooperation Suite in a civil engineer-
ing deployment case (cf. Figure 2).

In this project the RobustCooperation Suite is used to
support an iterative and interactive design process of
structural models in distributed teams. The RobustCoop-
erationClients are deployed on client devices with a model
editor (CEEditor), which has been developed by civil en-
gineering project partners. The RCSensServer relays
events captured in the editor allowing live sharing of
changes made in interactive editing session with other
users.

One instance of the RobustCooperationServer is run-
ning on a server device, the dcml Intel Pentium 4
3.20 GHz, with a direct Internet connection and a publicly
routed IP address. It is in the network 141.13.107.*. It
consists of five components. The RCSensServer compo-
nent provides sensor management and event processing
services that are used to tie together the functionality of
the other server components. It has four subcomponents:
RCSSGateway offers an XML-RPC interface for sending
control commands and sensor events. RCSSManagement
handles the registration of sensors and actuators.
RCSSPersistence stores events in a database and a cache
allowing state recovery after restarts and analysis of the
event history. RCSSTraversal implements the RobustTrav
mechanism, which is described below. Further compo-
nents are the RCIMServer, RCCalServer, RCSpaceServer,
and the RCModelServer (the latter stores the structural
models created in the editor).

Three instances of the RobustCooperationClient are
running on distinct physical client devices. Each instance
consists of the RCIM, CEEditor, RCCal, and RCSpace
client components. The cmlms1 client and the wilmer
client devices are a PowerMac G5 Dual 1.8 GHz, and a
MacBook Pro 15 Inch 2.4 GHz Intel Core i5 and are in
the network 10.0.1.*. The stint client device is a MacBook
Pro 15 Inch 2.4 GHz Intel Core 2 Duo in the network
141.54.159.*.

While stint has a public IP address and can connect to
the RCSensServer and receive push notifications, the cli-
ents cmlms1 and wilmer can only initiate outbound con-
nections to the RCSensServer component (i.e., users can
send and receive instant messages, use calendaring and
the shared project space). However, cmlms1 and wilmer
cannot be reached by the RCSensServer component
through push notifications, since they have non-routable
IP addresses in network 10.0.1.*. In fact, this network is

private and connected to the Internet via an Apple AirPort
Express WLAN station that acts as an Internet Gateway
Device (IGD) and performs NAT. Without push notifica-
tions, advanced features like sharing of live editing ses-
sions do not work (indicated as lightning bolt in Figure 2).

4 The RobustTrav Mechanism

The RobustTrav mechanism connects the server and all
clients of the RobustCooperation Suite within and across
different network and provides solutions to challenges
such as in the deployment above.

4.1 The RobustTrav Process

The RobustTrav mechanism leverages long polling;
subsequently we describe a scenario of its processing,
where for instance the user makes a change in the person-
al profile of the RCCal calendar client, which needs to be
propagated to the RCIM instant messaging client (cf. Fig-
ure 3).

The RCIM component subscribes to the actuator proxy
of the RCSSTraversal specifying its interest in the profile
change sensor through the RCSSGateway provided by the
RCSensServer component. The RCSSTraversal compo-
nent receives the incoming asynchronous RCIM request,
stores it as an individual thread (i.e., LongPollingActu-
atorClient extends ActuatorClient) in an inter-
nal HashTable and sends the corresponding Long-
PollingActuatorClient to sleep. Sleeping saves
processing power and memory on the RCSensServer
component. The RCCalProfileChange sensor sends up-
dates to the RCSSManagement component of the
RCSensServer, which stores them persistently. Updates
matching the RCIM component subscriptions wake up the
corresponding LongPollingActuatorClient. The
RCSSTraversal component collects all current events
from the RCSSPersistence and prepares a reply by for-
matting events as XML-String within a Vector of the
asynchronous request, sends the reply, and closes the con-
nection. The RCSSPersistence component stores all asso-
ciated events in a dedicated cache for fast delivery and for
guaranteeing consistency of events to attached clients.

Also for guaranteeing consistency, the RCIM compo-
nent can specify the identifier of the last event of the pre-
vious notification in order to receive only events since
then.

Figure 3. A typical publish/subscribe sequence using the RobustTrav mechanism.

4.2 The RobustTrav Parameters

The RobustTrav mechanism provides runtime and re-
quest parameters that influence the communication behav-
iour between the server and the clients. Based on a thor-
ough literature review and our own experience with de-
veloping and deploying event notification systems for
over a decade (e.g., [6]) we identified five parameters and
corresponding value ranges that are most significant for
the quality of the traversal mechanism.

Table 1 summarises the parameters and their value
ranges. The server parameters (S) specify the configura-
tion of the server before runtime. The request parameters
(R) specify the processing of the respective request in the
server and the clients.

Parameter S R Range

Server Timeout X 0–120,000ms
Client Timeout X 0–120,000ms
Client Regenerate Time X 0–500ms
Batch Size X 1–Cache Size
Batch Timespan X 0–10,000ms

Table 1. Server and Request parameters.

The Server Timeout parameter describes the time the
server keeps an incoming client connection open while the
corresponding thread is sleeping (i.e., the connection is
inactive). The minimum value of 0 means that the server
notifies the clients immediately. The maximum time a
connection can be sent to sleep is limited to 2 minutes in
order to avoid timeouts of the underlying TCP connec-
tions (e.g., some firewall implementations close inactive
connections after 2 minutes). In general, the shorter the
timeout, the more frequent new requests to the server are
made.

The Client Timeout parameter describes the time the
client waits for a reply on an opened server connection
before closing it. It has the same minimum, maximum,
and general characteristics as the server timeout.

The Client Regenerate Time parameter defines the time
a clients waits from the point a reply of a previous con-
nection was received until it initiates a new asynchronous
request to the server. During this time, for instance, the
client can process an incoming batch of events. A mini-
mum value of 0 means the client initiates a new request
immediately; the maximum of 500ms guarantees that all
events fit into the cache and none are missed.

The Batch Size parameter defines the amount of events
that the server sends to the client in one bunch. A mini-
mum value of 1 means a bunch size of 1 event. The max-
imum value is limited through the cache size of the hard-
ware the actuator proxy runs on.

The Batch Timespan parameter defines how long the
sever stores events in the cache before it sends them in a
bunch to the client. A minimum value 0 means, the server
sends new events immediately. The maximum value of
10,000ms prevents cache overflow during typical event
capturing frequencies.

These five parameters correlate among each other with
positive and negative effects. An example of a positive
effect is the combination of a moderate timeout value and
a low batch size value, which both cause frequent connec-
tions guaranteeing open notification channels and imme-

diate notifications on events. An example of a negative
effect is a low timeout value and a large batch size value
that both cause numerous connections with few new
events for the clients.

5 The RobustTravOpt

The optimisation of the overall performance of the Ro-
bustTrav mechanism leads to fast delivery of events to
clients (i.e., low latency between incoming events and the
notification of subscribers), while keeping processing
overhead low (i.e., the required amount of processing for
receiving, for sending to sleep, and for waking long poll-
ing connection threads). A series of performance meas-
urements paved the way to the optimum values for the
parameters.

5.1 Setup for the Performance Measurements

The setup is characterised by the hardware, software,
and test case arrangements.

The hardware setup includes a native network host, a
simulated NAT environment, and a virtualised network
host. The native network host runs the RCSensServer
component of the RobustCooperationServer on a Mac-
Book Pro, Intel Core i5 2.4 GHz with 4 GB of DDR3
RAM with OS X 10.6.7 and Java version 1.6.0_24 in-
stalled. The NAT environment is simulated (as recom-
mended by [2]) using Oracle’s virtualisation software
Virtual Box version 4.0.10. On the virtual network host
runs a test scenario virtualised in Ubuntu Linux 10.04
with Java version 1.6.0_20 and 1024 MB RAM assigned.
The virtual network host automatically runs and logs all
test cases for each parameter.

The software setup is based on two applications for the
clients: EventGenerator and RobustTravClient. The
EventGenerator generates events containing an incremen-
tal event number and a sending timestamp in nanosec-
onds. It pushes them to the RCSensServer using a direct
socket connection. It runs on the virtual network host. The
RobustTravClient subscribes to the RCSensServer and
receives events accordingly. It analyses incoming events
with respect to their order based on their event numbers
and concerning their latency based on their sending and
receiving time stamps. Finally, it logs those events. Run-
ning both the EventGenerator and the RobustTravClient
within one virtual machine guarantees synchronised
timestamps for sending and receiving events.

Each parameter is arranged in one test case. Each test
case has ten test runs with a specific test value of the re-
spective parameter, in order to have a sufficient amount of
data points generated while keeping runtime moderate.
For each parameter we chose the ten test values according
to their range as described above. Table 2 shows the pa-
rameters and their test values. The lower test values are
denser, because here short distances contain valuable in-
sights.

A typical event sending frequency is 30ms, as we ob-
tained from analysing events occurred during the devel-
opment of the RobustCooperation Suite. We choose
10,000 events per test run, in order to ensure a time of 5
minutes per test run. The 5 minutes also allow the occur-
rence of at least two timeouts within a single test run. 50

RobustTravClient clients are dynamically created, which
means 500,000 received events (i.e., each of the 50 clients
receives 10,000 events) per test run.

Parameter Values

Server Timeout 500; 1000; 5000; 10,000; 30,000;
60,000; 75,000; 90,000; 105,000;
120,000 [ms]

Client Timeout 500; 1000; 5000; 10,000; 30,000;
60,000; 75,000; 90,000; 105,000;
120,000 [ms]

Client Regenerate
Time

0; 50; 100; 150; 200; 250; 300; 350;
400; 450 [ms]

Batch Size 1; 5; 10; 25; 50; 100; 200; 300; 500;
750 [events]

Batch Timespan 50; 500; 1000; 2000; 3000; 4000;
5000; 7500; 9000; 10,000 [ms]

Table 2. Parameters values used in the measurement.

Consequently, 5 parameters, 10 values per parameters,
and 500,000 events per value amount to 25,000,000
events within a total run time of 240 minutes.

5.2 Results of the Parameter Measurement

In order to derive the optimal value for each parameter,
we analysed the log files aggregating the minimal, aver-
age, and maximal latencies. We identified optimal values
by considering local minimal latencies while balancing
average and maximal latencies.

In general, the sequence of the events remained con-
sistent over all runs; there was no event loss over all
25,000,000 events; the server’s processes generated a
CPU load between 90% using one core up to 150% using
two cores on the native host. Subsequently, we report on
the results of the individual test cases.

For the Server Timeout the latencies varied between
1.29ms and 10.7 s. Figure 4 shows the measured latencies.
The wide range between minimum and maximum laten-
cies results from the caching behaviour of the
RCSensServer.

Figure 4. Effect of Server Timeout on latency.

The minimal latency depends on the timespan between
two client connects: the longer the time span, the higher
the latencies for early events. The maximum latency has a

plateau at 10,000ms, which results from the aggregation
of the peaks of the 50 clients’ processing and scheduling
overheads. The average latencies remained nearly con-
stant between 160ms and 190ms. The optimal Server
Timeout is 1000ms, due to the local minimum of average
and maximum.

For the Client Timeout the latencies varied between
1.87ms and 10.7s. Figure 5 shows the measured latencies.
The curve shows minimum values and differences to the
maximum value that are similar to the server timeout, for
the same reasons explained above. The maximal latency
values have their plateau at a top boundary of around
10,000ms, and the maximum latency grows rapidly above
a client timeout of 5,000ms. Increasing the Client Timeout
from 500ms to 1000ms has no significant impact on the
minimal (from 2.00ms to 1.88ms), average (from 171.5ms
to 169.53ms), or maximal (from 1,459.12ms to
1,825.92ms) latencies. Therefore, the optimal Client
Timeout is 1000ms.

Figure 5. Effect of Client Timeout on latency.

For the Client Regenerate Time the latencies varied be-
tween 2.86ms and 10.9s. Figure 6 shows the measured
latencies. Again we see a wide range between minimum
and maximum latencies.

Figure 6. Effect of Client Regenerate Time on latency.

This parameter has no impact on the maximum laten-
cies, because they only depend on the timeout parameters
(Client Timeout and Server Timeout are set to
120,000ms). The minimum of the average latency is
100ms; in fact, the average latency is 8% lower than with
a time of 0ms. Therefore, the optimal Client Regenerate
Time is 100ms.

For the Batch Size parameter the latencies varied be-
tween 1.67ms and 59.5s. Figure 7 shows the measured
latencies. It is obvious that larger batch sizes cause higher
latencies as the sending events is delayed until a batch is
full or a timeout is reached. This parameter correlates with
the average latency with a factor of 20 to 30. There is a
wide range between minimal and maximal latencies. The
minimal latencies reached up to 115ms. The average la-
tencies are between 169ms and 20s. The maximal laten-
cies do not have a plateau within the measured range.
Therefore, the optimal Batch Size is 5 events, at the min-
imum of the average latency. If an application requires
instant notification on a high event frequency (i.e., lower
than 30ms) the Batch Size can be reduced to 1 event.

Figure 7. Effect of Batch Size on latency.

For the Batch Timespan parameter the latencies varied
between 2.1ms and 27.5s. Figure 8 shows the measured
latencies.

Figure 8. Effect of Batch Timespan on latency.

As with the Batch Size, it is obvious that higher Batch
Timespans cause higher latencies: this parameter corre-
lates with latency with a factor of 1.5 (at 30ms event gen-
eration frequency). There is a wide range between mini-
mal and maximal latencies. Increasing it has significant
impact on the average latency. Although we have an out-
lier in the minimum latency at 9s Batch Timespan in our
measurement, no global minima are visible. Therefore, the
optimal Batch Timespan is 0ms. Depending on the appli-
cation (e.g., less frequently connecting long polling cli-
ents, embedded systems), this parameter may have to be
set to a higher value.

5.3 The Optimal Configuration of Robust-
TravOpt

The optimal values for all individual parameters were
derived above. In order to confirm that these values also
lead to an optimal overall performance of RobustTravOpt,
we conducted another test run with all optimal parameter
values.

Table 3 shows the optimal configuration of Robust-
TravOpt—it shows the parameter names and summarises
the minimum, average, and maximum latencies of the
individual parameter optimisations and in the last row
shows the overall performance with the optimal configu-
ration.

Parameter Min

[ms]
Avg
[ms]

Max
[ms]

Server Timeout (1000ms) 1.29 169.35 1553.72
Client Timeout (1000ms) 1.87 169.53 1825.93
Client Regenerate Time
(100ms)

2.88 168.01 10,405.89

Batch Size (5 events) 1.94 169.10 10,349.52
Batch Timespan (0ms) 2.19 203.30 10,523.80
Overall (all parameters
values optimised as above)

1.66 167.50 2,677.29

Table 3. Parameters and measured latencies.

As can be seen the overall minimal latency of 1.66ms
is close to the best minimal latency of 1.29ms. The overall
average latency of 167.50ms is even better than the best
average latency of 168.01ms. And the overall maximum
latency of 2,677.29ms is a decent value, especially com-
pared to the three high latencies of more than 10,000ms.
So, overall the performance of the optimal configuration
is fast and efficient in its minimum and average, and bal-
ancing and stable in its maximum.

6 Conclusions

In this paper we motivated the need for effective and
efficient NAT traversal. We introduced RobustTrav, a
long polling mechanism implemented for XML-RPC and
demonstrated its feasibility. We identified the five most
significant parameters for the performance of RobustTrav
and introduced the optimisation of the latency of event
delivery RobustTravOpt.

We learned important lessons on the arrangement of
measurements for NAT traversal mechanisms. Using a
virtual machine to simulate a NAT environment elimi-

nates unwanted delays and interference caused by a phys-
ical network connection while at the same time not behav-
ing like a simple loopback device. For measuring latency,
it is important that synchronised clocks create timestamps
for the generating and receiving events. In order to reach
sufficient accuracy (i.e., in the range of nanoseconds)
generating and receiving events should run on the same
computer. Pushing generated events to the server should
create a minimal overhead, which is why we decided to
use raw sockets rather than XML-RPC.

Compared to our earlier evaluation [7] of non-NAT-
traversing push notifications an increasing amount of cli-
ents caused no significant load on the server and the pro-
cessing overhead.

Furthermore, we introduced the RobustCooperation
Suite for supporting end-users in distributed teams. The
RCIM application allows end-users to manage their online
contacts and exchange instant text messages, as well as
share files and workspaces. The RCCal application lets
end-users coordinate their tasks—they can create calen-
dars and calendar events, and share them with other users.
The RCSpace application provides means for organising
and sharing project files.

End-users benefit from the RobustTrav mechanism as
they are working in their client application, which can
span inhomogeneous networks across different NAT envi-
ronments without any effort to modify the routing and
firewall configuration for receiving events from the cen-
tral server. At the same time they profit from a balanced
average performance as shown in RobustTravOpt.

Additionally to the performance measurement con-
ducted in a lab setting, we are looking forward to analys-
ing how the measured average latencies are met in inho-
mogeneous real world network spanning across different
NAT environments and how our optimal configuration
generalises to other network topologies such as rings or
trees.

Acknowledgments

The work on the first user-centred prototyping of the concepts
and systems was done in the project TransKoop, partly funded by
the Federal Ministry of Transport, Building, and Urban Affairs and
by the Project Management Juelich (TransKoop FKZ
03WWTH018); and the work on the distributed architecture and its
performance optimisation was done in the project Robust Design of
Structures, partly funded by the Thuringian Programme on Excel-
lency (ProExzellenz-Projekt B514-09052). We thank all members of
the Cooperative Media Lab as well as the project partners of the two
projects.

References

[1] Baset, S.A. and Schulzrinne, H. Reliability and Relay Selec-
tion in Peer-to-Peer Communication Systems. In Proc. of the
Conference on Principles, Systems, and Applications of IP
Telecommunications Conference - IPTComm 2010. ACM,
N.Y., 2010. pp. 111-121.

[2] Biswas, D., Bean, K. and Kerschbaum, F. NAT/Firewall Tra-
versal Cost Model for Publish-Subscribe Systems. In Proc. of
the Second Joint WOSP/SIPEW International Conference on
Performance Engineering - ICPE 2011. ACM, N.Y., 2011. pp.
487-492.

[3] Codehaus Foundation. jetty - Jetty WebServer. http://jetty.
codehaus.org/jetty/, 2011. (Accessed 20/7/2011).

[4] Daboo, C., Desruisseaux, B. and Dusseault, L. Calendaring
Extensions to WebDAV (CalDAV) The Internet Engineering
Task Force, http://www.ietf.org/rfc/rfc4791.txt, 2007. (Ac-
cessed 20/7/2011).

[5] Dustdar, S., Gall, H. and Schmidt, R. Web Services for
Groupware in Distributed and Mobile Collaboration. In Proc.
of the Twelfth Euromicro Conference on Parallel, Distributed,
and Network-Based Processing - PDP 2004. IEEE Computer
Society Press, Los Alamitos, 2004. pp. 241-248.

[6] Gross, T. and Beckmann, C. Advanced Publish and Subscribe
for Distributed Sensor-Based Infrastructures: The CoL-
ocScribe Cooperative Media Space. In Proc. of the Seven-
teenth Euromicro Conference on Parallel, Distributed, and
Network-Based Processing - PDP 2009. IEEE Computer Soci-
ety Press, Los Alamitos, 2009. pp. 333-340.

[7] Gross, T., Beckmann, C. and Schirmer, M. The PPPSpace:
Innovative Concepts for Permanent Capturing, Persistent Stor-
ing, and Parallel Processing and Distributing Events. In Proc.
of the Eighteenth Euromicro Conference on Parallel, Distrib-
uted, and Network-Based Processing - PDP 2010. IEEE Com-
puter Society Press, Los Alamitos, 2010. pp. 359-366.

[8] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-
Oriented Platform for Developing Sensor-Based Infrastruc-
tures. International Journal of Internet Protocol Technology
(IJIPT) 1, 3 (2006). pp. 159-167.

[9] Huston, G. Anatomy: A Look Inside Network Address Trans-
lators. The Internet Protocol Journal 7, 3 (Sept. 2004). pp. 2-
32.

[10] Ignite Realtime. Ignite Realtime: Openfire Server. http://www.
igniterealtime.org/projects/openfire/, 2011. (Accessed
20/7/2011).

[11] Maciel, R.S.P., David, J.M.N., Oei, M.R., Bastos, A.A.d.O.
and Menezes, L.d.O. Supporting Awareness in Groupware
Through an Aspect-Oriented Middleware Service. Journal of
Universal Computer Science 15, 9 (May 2009). pp. 1945-
1969.

[12] Mueller, A., Evans, N., Grothoff, C. and Kamkar, S. Autono-
mous NAT Traversal. In Proc. of the Tenth International Con-
ference on Peer-to-Peer Computing - P2P. IEEE Computer
Society Press, Los Alamitos, 2010. pp. 1-4.

[13] OrbiTeam. OrbiTeam | BSCW : BSCW Groupware for Effi-
cient Team Collaboration and Document Management. Or-
biTeam Software GmbH & Co. KG, http://www.bscw.de/eng
lish/index.html, 2011. (Accessed 20/7/2011).

[14] Prinz, W. NESSIE: An Awareness Environment for Coopera-
tive Settings. In Proc. of the Sixth European Conference on
Computer-Supported Cooperative Work - ECSCW'99. Kluwer
Academic Publishers, Dordrecht, 1999. pp. 391-410.

[15] Russel, A. Comet: Low Latency Data for the Browser.
http://www.infrequently.org/2006/03/comet-low-latency-data-
for-the-browser/, 2006. (Accessed 26/10/2011).

[16] Saint-Andre, P. Extensible Messaging and Presence Protocol
(XMPP): Core - RFC 6120. The Internet Engineering Task
Force, http://www.ietf.org/rfc/rfc6120.txt, 2011. (Accessed
20/7/2011).

[17] Saint-Andre, P. Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence - RFC 6121. The In-
ternet Engineering Task Force, http://www.ietf.org/rfc/
rfc6121.txt, 2011. (Accessed 20/7/2011).

[18] Skype. Free Skype Calls and Cheap Calls to Phones - Skype.
http://www.skype.com/, 2011. (Accessed 20/7/2011).

[19] UPnP Forum. Device Control Protocols - UPnP Forum.
http://www.upnp.org/sdcps-and-certification/standards/sdcps/,
2011. (Accessed 26/10/2011).

[20] Winer, D. XML-RPC Specification. http://www.xmlrpc.com/
spec, 1999. (Accessed 20/7/2011).

