Towards Semantic Modelling in
Adaptive Ubiquitous Environments

Tom Gross
Faculty of Media
Bauhaus-University Weimar
Bauhausstr. 11, 99423 Weimar, Germany
tom.gross(at)medien.uni-weimar.de

ABSTRACT

In this paper we glance at our current work on the concept
and implementation of a service-oriented sensor-based
platform to support adaptive ubiquitous environments and
motivate the interest in this workshop on semantic models
for adaptive interactive systems.

Author Keywords
Computer-Supported Cooperative Work; Context
Modelling; Semantic Modelling.

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User
Interfaces — Graphical User Interfaces, User-Centred
Design; H.5.3 [Information Interfaces and Presentation]:
Group and Organisation Interfaces — Computer-Supported
Cooperative Work.

INTRODUCTION

In our Cooperative Media Lab we develop adaptive
cooperative ubiquitous environments supporting easy
communication and cooperation within collocated groups,
and among distributed sub-groups in mixed reality settings.
We follow a layered approach in several steps: we first
developed the based platform, then extended the platform,
and now we integrate more and more inference engines.

SENS-ATION

Sens-ation is a platform that provides developers of sensor-
based infrastructures with a toolkit and building blocks for
the infrastructures they want to create and maintain [5]. It
follows the tradition of examples such as Khronika [9],
Elvin [4], and ENI [8]. And it offers sensors for capturing
data from the real word and from the electronic world;
persistence and querying for storing the data and inferring
on the data, and clients for retrieving the data. Its main
advantage is the abstraction from basic hardware, software,
and network technology.

SensBution [7] is an extension of Sens-ation [5] for a peer-
to-peer architecture based on services. With
SensBution—and its multifarious adaptors for integrating
sensors, and gateways for integrating clients and
peers—developers can create and maintain distributed
infrastructures rather easily. Here we just want to give an
overall impression (Figure 1 shows the components of a

SensBution peer). The basic components of SensBution are
peers consisting of several subsystems and components.

e The Adapter subsystem connects sensors to the
respective SensBution peer and submits sensor event
data via Web Services, XML-RPC, common gateway
interface, hypertext transfer protocol, or socket
connection.

e The SensorPort component receives incoming sensor
events from the adapters and forwards the events to the
Management subsystem.

e The Management subsystem consists of the
SensorHandler, the Registry, and the GatewayHandler
component. The SensorHandler processes the sensor
input received via the SensorPort. The Registry
maintains data on the resources of the platform, such as
active sensors, or locations. The GatewayHandler
processes requests from the gateway components.

e The Publisher component offers a publish-subscribe
mechanism that can be accessed via remote method
invocation of the RMI component in the Gateway
subsystem.

e The Inferencing subsystem provides an interface for
inference engines that process and infer on sensor event
data.

e The Persistence subsystem consists of the Database
(long-term storage) and the Cache (short-term storage)
component.

e The Rulelnferencing subsystem handles and processes
rule-based queries. Its components are: the
QueryHandler, the QueryProcessing, and the Rulebase.
The QueryHandler component handles incoming queries
from the Gateway subsystem. If the query comes from
another peer, the QueryHandler forwards the query to
QueryProcessing and gets the results immediately. If
the query comes from a client, the QueryHandler
forwards the query to the Gateway P2P subsystem for
distribution in the peer-to-peer network, and then
forwards the query to QueryProcessing. The results are
delivered to the requesting Gateway. The QueryHandler
incorporates a query scheduler. The QueryProcessing
component extracts all parts of received queries and
forwards them to the Rulebase for evaluation. The
result received by the Rulebase is handed back to the

«system»
SensBution Peer
«subsystem» «subsystem»
Gateway Management bsvet
«subsystem>
«system»] > «component» <] ‘é‘:enst);rPori>
h «Subsystem» «components | | «components
SensBution = > P2p Gateway .
Registry ensorHandler| N
Peer L Handler '
«subsystem «component» i i A A i
- e = 1 I 1 1
Client 21 [JXTA il : " : -
L | «subsystem-» | ! ' ' «subsystem»
> Rulelnferencing X ' ! Adapter
«subsystems» «Subsystem» i 0! !
Subscriber =]| Client-Server |[<1 ! Yy
L | «component» ! ! ! «component» «component» e . | «subsystem»
QueryHandler ! " Publisher WebService Sensor
«component» ! :,
WebService y i A A
«component» i «subsystem» 1 «component»
Query ! yste ' XML-RPC
«compaonent» Processing i Inferencing |
RMI - ! T i
i H ! «component»
«component» | ! 1 CGl
«component» Rulebase | ! 1
XML-RPC \ ' H
: ' ! ' «component»
«component» v A2 72 i HTTP
cGl «subsystems H
Persistence ' «component»
1
«component» ! Socket
HTTP «component» N «component» !
Database Cache !
1
«component» || j
Socket
Figure 1. Components of a SensBution peer. Source: [7].

QueryHandler. The Rulebase maintains all rules and
supplies the derivation rules delivering the query
results.

* The Gateway subsystem handles requests and responses
over different kinds of protocols and interfaces (i.e., a
peer-to-peer gateway, and client-server gateways for
Web Services, remote method invocation, XML-RPC,
common gateway interface, hypertext transfer protocol,
and sockets). The Gateway receives requests and
forwards each of them by the GatewayHandler to the
responsible subsystems. The Gateway P2P subsystem
distributes queries to and from other SensBution peers.
Queries get distributed according to the one-to-many or
broadcast pattern— therefore, SensBution does not need
a no central routing instance to direct queries to peers.
Each SensBution peer receives the queries of all other
SensBution peers in the same peer group. The Gateway
P2P subsystem sends answers to the querying peer by a
one-to-one pattern since the addressee is known.

Sens-ation and SensBution were developed with Java 2
Standard Edition 5.0 Platform [10]. The JXTA [11]
protocols are used for the peer-to-peer implementation,
based on the abstract programmers interface of the JXTA
Abstraction Layer (JAL). The inference engines are based
on Prolog [2] algorithms; and the Mandarax Java
framework is used for derivation rules and an
implementation of a rule engine [3].

DEALING WITH THE SEMANTICS OF EVENT
DATA

Sens-ation and SensBution offer generic programming
interfaces for implementing adaptation into inference
engines that process the event data captured by the sensors
and stored in the platform.

The event data that is captured by the sensors is represented
as attribute-value pairs. Each event has mandatory
attributes that are required —that is, each event that is
captured by sensors needs values for these attributes:

¢ SensorID

e SensorType

¢ SensorValue

¢ OccurrenceDate
¢ OccurenceTime
¢ Location

Each event has optional attributes—that is, here attributes
have standardised labels, but do not necessarily need values
in each single event data:

e UserList

* RelativeTimestamp
¢ Urgency

e Sampling

* Frequency

e Granularity

* Ingredients

* Relationship

Finally, events can have any number of custom attributes.
Custom attributes consist of a string representing the key,
and a string or number representing the value.

In Sens-ation and SensBution all components that do
operations on event data are called inference engines; they
range from rather simple operations to machine learning
algorithms. Some basic inference engines allow the
processing of numerical data (e.g., min, max, average) and
of text data (e.g., pattern matching). Some more complex
inference engines are based on machine learning techniques.

For instance, the CoDaMine engine does communication
data mining: it performs supervised learning on the text
chat contents of instant messaging users in order to learn
about their current situation and adapt the environment
accordingly [6].

Currently a recommender engine is integrated into Sens-
ation with the inference engine programming interface. We
use the Apache Mahout Taste that provides a flexible and
fast recommender engine [1]. It offers a data model and
storage, and it provides user similarity and item similarity.
We use it for storing user settings and preferences of our
sensor-based environments and for providing suggestions
for adapting the environment to the group of present users.

CONCLUSIONS

The topics suggested in the workshop call for position
papers are very interesting. In the workshop I would be
particularly interested in discussing semantic modelling
approaches for adaptive cooperative ubiquitous
environments that combine the strengths and provide
synergies between modelling approaches from computer-
supported cooperative work and ubiquitous computing with
concepts from semantic modelling.

BIOGRAPHICAL INFORMATION

Tom Gross is associate professor for Computer-Supported
Cooperative Work and head of the Cooperative Media Lab
at the Faculty of Media of the Bauhaus-University Weimar,
Germany. His research interests include Computer-
Supported Cooperative Work, Human-Computer
Interaction, and Ubiquitous Computing. Since beginning
of 2008 he is Prorektor (vice-president) of the Bauhaus-
University Weimar. He holds a diploma and a doctorate
degree in Applied Computer Science from the Johannes
Kepler University Linz, Austria.

ACKNOWLEDGEMENTS

Thanks to the members of the Cooperative Media
Lab—especially Mirko Fetter, and Thilo Paul-Stueve. Part
of the work has been funded by the Federal Ministry of
Transport, Building, and Urban Affairs and by the Project
Management Juelich (TransKoop FKZ 03WWTHO018).

REFERENCES

[1] Apache Software Foundation. Apache Mahout - Taste
Documentation.
http://lucene.apache.org/mahout/taste.html, 2009.
(Accessed 1/12/2009).

[2] Colmerauer, A. and Roussel, P. The Birth of Prolog.
In Second ACM SIGPLAN Conference on History of
Programming Languages - HOPL'92 (Apr. 20-23,
Cambridge, MA). ACM Press, New York, NY, 1992.
pp- 37-52.

[3] Dietrich,J. The Mandarax Project. Open Source
Technology Group, http://mandarax.sourceforge.net/,
2004. (Accessed 7/3/2007).

[4] Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D.
and Segall, B. Supporting Public Availability and
Accessibility with Elvin: Experiences and Reflections.
Computer Supported Cooperative Work: The Journal
of Collaborative Computing 11, 3-4 (2002). pp. 447-
474.

[5] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A
Service-Oriented Platform for Developing Sensor-
Based Infrastructures. International Journal of Internet
Protocol Technology (IJIPT) 1,3 (2006). pp. 159-
167.

[6] Gross, T. and Fetter, M. CoDaMine: Communication
Data Mining for Feedback and Control in Ubiquitous
Environments. In Proceedings of the Sixteenth
Euromicro Conference on Parallel, Distributed, and
Network-Based Processing - PDP 2008 (Feb. 13-15,
Toulouse, France). IEEE Computer Society Press,
Los Alamitos, 2008. pp. 539-546.

[71 Gross, T., Paul-Stueve, T. and Palakarska, T.
SensBution: A Rule-Based Peer-to-Peer Approach for
Sensor-Based Infrastructures. In Proceedings of the
33rd EUROMICRO Conference on Software
Engineering and Advanced Applications - SEAA 2007
(Aug. 27-31, Luebeck, Germany). IEEE Computer
Society Press, Los Alamitos, 2007. pp. 333-340.

[8] Gross, T. and Prinz, W. Modelling Shared Contexts
in Cooperative Environments: Concept,
Implementation, and Evaluation. Computer Supported

Cooperative Work: The Journal of Collaborative
Computing 13, 3-4 (Aug. 2004). pp. 283-303.

[9] Loevstrand, L. Being Selectively Aware with the
Khronika System. In Proceedings of the Second
European Conference on Computer-Supported
Cooperative Work - ECSCW'91 (Sept. 24-27,
Amsterdam, NL). Kluwer Academic Publishers,
Dortrecht, NL, 1991. pp. 265-278.

[10] Sun Microsystems, 1. J2SE 5.0.
http://java.sun.com/j2se/1.5.0/, 2007. (Accessed
15/3/2007).

[11] Sun Microsystems Inc. jxta: JXTA Commnity
Projects. https://jxta.dev java.net/, 2010. (Accessed
8/1/2010).

