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Explanations in automated vehicles enhance passengers’ understanding of vehicle decision-making, mitigating negative
experiences by increasing their sense of control. These explanations help maintain situation awareness, even when passengers
are not actively driving, and calibrate trust to match vehicle capabilities, enabling safe engagement in non-driving related
tasks. While design studies emphasize timing as a crucial factor affecting trust, machine learning practices for explanation
generation primarily focus on content rather than delivery timing. This discrepancy could lead to mistimed explanations,
causing misunderstandings or unnecessary interruptions. This gap is partly due to a lack of datasets capturing passengers’ real-
world demands and experiences with in-vehicle explanations. We introduce TimelyTale, an approach that records passengers’
demands for explanations in automated vehicles. The dataset includes environmental, driving-related, and passenger-specific
sensor data for context-aware explanations. Our machine learning analysis identifies proprioceptive and physiological data as
key features for predicting passengers’ explanation demands, suggesting their potential for generating timely, context-aware
explanations. The TimelyTale dataset is available at https://doi.org/10.7910/DVN/CQ8UB0.
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1 Introduction
The integration of automated vehicles into our daily lives is expected to bring benefits for urban mobility, such
as increased safety, reduced traffic congestion [31, 84], and enhanced accessibility for various socioeconomic
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groups, particularly those who are currently disadvantaged or unable to drive [165]. Although the timeline for
widespread adoption of fully automated vehicles (SAE Level 5) remains uncertain, with some studies predicting
market readiness by 2030 [140], building user trust is a critical factor in the successful deployment and acceptance
of automated vehicles, as it affects users’ attitudes towards the technology [18]. However, public anxiety and
hesitation towards automated vehicles [79], combined with the potential for low trust, which causes worry and
decreased acceptance [80], highlight the challenges in fostering user trust. Explanations in automated vehicles
can help address these challenges by alleviating negative experiences and providing an increased sense of control
[129]. By improving understanding of the vehicle’s capabilities [74, 128] and enhancing situation awareness [64],
explanations can improve passenger trust [116] and acceptance [64].

To support trust and situation awareness as intended, providing explanations in automated vehicles requires
the consideration of nuanced contexts. Since poorly designed explanations can adversely affect the passenger
experience [46], explanations should convey information with sufficient intelligibility under rapidly changing
road environments [48]. Thus, previous studies have explored various explanation presentation methods, focusing
on enhancing the passenger experience by building trust, comfort, and acceptance while reducing fear, anxiety,
and cognitive load [19, 20, 22, 74, 92, 127, 147]. These studies have considered design factors, such as explanation
types and timing, as well as modality, visualization methods, and information quantity, across different driving
scenarios and non-driving related tasks (NDRTs).
Alongside other design factors, the timing of explanations should be considered for effective information

delivery and for enhancing the passenger experience in automated vehicles. For instance, Haspiel et al. [49] found
that providing explanations before an automated vehicle takes action enhances user trust. The experiment by Du
et al. [32] has underscored that explanations given before an automated vehicle’s actions are more effective in
building trust than those delivered afterward. Despite their importance, the optimal timing for explanations and
the actual passenger demand in real road environments have yet to be widely explored, particularly outside of
simulated environments [92]. This work aims to contribute to this area by creating a multimodal dataset that
captures real-time demands for in-vehicle explanations during automated driving, aiming to align explanation
timing with passenger needs better.

Current machine learning approaches to explanation generation, which are often designed for developers and
regulators, may not fully align with passenger requirements. They tend to focus on high-risk scenarios, such as
accidents [104] or offer explanations for every scenario [67], which may not always be necessary and could be
disruptive. Few studies [77, 113, 114] have considered human perspectives. A primary obstacle to developing
passenger-centric explainable artificial intelligence (XAI) black models is the lack of datasets that account for
passenger contexts [33]. Due to the limited norm of data sharing in automotive studies, most naturalistic driving
studies do not share their data [33]. Dataset for passengers’ actions, states, and demands for explanations are
keys to aligning XAI models with end-user services that provide both proactive and adaptive explanations. Our
research aims to address situations in which explanations can compete for passengers’ attention during NDRTs
under naturalistic driving scenarios.
In identifying the right moments for explanations, we explored the concept of in-vehicle interruptibility. In

manually driven vehicles, AI-initiated interactions aim to support safe driving [56], and such interventions must
not distract drivers, necessitating a focus on the driver’s availability—a concept referred to as interruptibility
[5, 72]. However, in automated vehicles, where passengers are generally not engaged in driving tasks, the
emphasis shifts from identifying moments for secondary tasks during manual driving to pinpointing moments
for driving-related information during NDRTs [73]. Our study addresses this shift in focus, exploring the concept
of passengers’ demand for explanations, a transition from the traditional concept of in-vehicle interruptibility, to
support passengers’ situation awareness during automated driving situations.
Our study seeks to bridge the gaps in datasets for in-vehicle explanations, with a focus on capturing in-situ

passenger experiences and collecting real-time data across environmental, driving, and passenger contexts. This
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dataset includes real-time demands for explanations from passengers in automated vehicles under actual road
conditions. By incorporating the concept of interruptibility, our dataset and analysis is designed to support the
development of proactive XAI services that can adapt to passenger needs and provide timely interactions.

1.1 Present Work
In this study, we present a multimodal dataset for explanation demands in automated vehicles, focusing on highly
automated vehicles with SAE levels 4-5 and passengers who are not already familiar with these vehicles. Our
dataset provides passenger explanation demand timing and content, contributing to the fields of interruptibility
and XAI in the following ways:

• We offer explanation demand timing and content in the form of textual driving explanations required
by in-situ passengers, synchronized with timestamped exteroceptive, proprioceptive, and interoceptive
data for environmental, driving, and passenger contexts. For a detailed description of the composition and
formatting of each data channel, refer to Appendix B.

• We analyze explanation demands in relation to geographical data using co-occurrence analysis, GPS-tagged
clustering, and textual analysis to understand the most common demand scenarios.

• We develop a preliminary machine learning model that predicts opportune moments for providing explana-
tions, extending the concept of interruptibility to the domain of XAI in automated vehicles.

2 Related Works

2.1 Explanations and Trust Calibration
As Norman discussed, inattentiveness to automation or inappropriate understanding of the automation’s status
and actions may lead to unawareness and inability to intervene in the automation, even in critical situations
[111]. To prevent this, automation systems, particularly automated vehicles, should communicate their state to
users in a comprehensible manner, making their processes and status transparent [16]. Explanations in automated
vehicles enhance transparency and help passengers understand the vehicle’s decision-making process. This
increased transparency contributes to passenger trust and improves the overall experience in automated vehicles
[64]. When passengers have a clear understanding of the vehicle’s capabilities and limitations, they can trust the
system to handle the driving tasks without constantly monitoring its functions [59]. Providing information about
the system’s potential limitations helps prevent temporary declines in trust [76].

However, the primary goal of explanations in automated vehicles should not be merely to increase passenger
trust regardless of the vehicle’s actual capabilities. Instead, the true purpose of explanations is to calibrate user
trust. Explanations help passengers understand the vehicle’s genuine capabilities, enabling them to trust the
vehicle at an appropriate level, preventing both undertrust and overtrust [142]. Explanations can help users
calibrate their trust in the system, leading to a more appropriate level of trust that matches the system’s actual
capabilities [52].
Overtrust in automated vehicles can lead to complacency, where passengers may fail to remain sufficiently

aware of the road environment and react appropriately in cases of systemmalfunction. Although highly automated
vehicles with SAE levels 4 are designed to operate without human intervention, they function within predefined
operational design domains (ODDs) [75]. While passengers are not expected to take control of the vehicle and
may not need to be constantly aware of the road environment, they should understand the vehicle’s operation,
the situations it can handle, and its boundaries. Overtrust could cause users to believe that the vehicle can
operate under any condition without properly assessing whether the current situation falls within the ODD
[142]. In rare cases, Level 4 AVs might encounter situations beyond their capabilities, such as extreme weather
events or unexpected road hazards. Overtrust could lead to a false sense of security and lack of preparedness
for emergencies and lead to the misuse of the system, where users rely on the automated vehicle in situations
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beyond its capabilities [142]. Explanations help passengers improve their situation awareness, understand the
vehicle’s state and capabilities, and trust the vehicle to the appropriate level [74].

To calibrate user trust without degrading passenger experience, the interaction with these explanations should
consider the content and timing. Trust in AI systems is influenced by their ability to provide justifiable explanations
[120]. Poorly designed explanations in AI can lead to trust calibration errors, such as irrational agreement or
disagreement with the AI’s decisions [105]. Therefore, the content of explanations should be tailored to the
specific context and user needs. The timing of explanations also influences trust levels. Explanations provided
before an action tend to foster more trust than those given afterward [49]. Risk-adaptive explanations have
been found to be effective in promoting passenger experience and acceptance, especially when the information
provided is overwhelming [64]. Explainability contributes to trust in AI by fostering justified and warranted trust,
particularly when it enables users to rely on the system without constant monitoring [36].

In summary, well-designed explanations delivered at opportune moments can help passengers calibrate their
trust in automated vehicles by providing transparency about the vehicle’s current state and actions. Effective
explanations should be tailored to the user’s needs, provide information about the system’s decision-making
process, and be delivered at appropriate times to foster trust and acceptance. This study aims to contribute to
the development of intelligible explanations that deliver relevant information at appropriate times, enabling
passengers to maintain a well-calibrated level of trust in automated vehicles.

2.2 Non-driving Related Tasks and In-vehicle Explanations
In highly automated vehicles with SAE levels 4 or higher, passengers are free to engage in NDRTs such as reading,
watching videos, or working on their laptops, as the vehicle handles all driving tasks without human intervention
[8, 106]. While passengers are not required to actively monitor the driving environment or take over control,
maintaining a certain level of situation awareness is still important for a safe and comfortable experience [19, 21].
This shift in the primary task from driving to NDRTs creates new challenges in understanding how the passenger
interacts with the vehicle and the driving environment, as well as how to support their situation awareness during
NDRTs in automated vehicles. Engaging in NDRTs can divert passenger attention from the driving situation [95].
For example, a passenger immersed in watching a movie or working on a complex task may not notice changes in
the vehicle’s speed, direction, or surrounding traffic conditions. Thus, engaging in NDRTs can result in reduced
situation awareness [95], potentially leading to discomfort or anxiety when the vehicle encounters unexpected
situations or takes actions that the passenger does not understand [145]. To attain situation awareness, people
often self-interrupt their NDRT and watch the immediate surrounding environment [43]. As self-interruption
halts the ongoing NDRT, passenger self-interruption poses trade-offs between situation awareness and NDRT
engagement. Additionally, in some studies, intermittent views of the road did not suffice to maintain situation
awareness [124]. In this regard, explanations from the vehicle about its actions and the driving environment can
be helpful in promoting situation awareness [74].
While explanations can provide situation awareness in vehicles, they can also interrupt passengers engaged

with NDRTs. Thus, automated vehicles should support passengers in deciding whether to interrupt an NDRT and
facilitate the re-uptake of the NDRT [107]. In highly or fully automated vehicles, although passengers don’t have
to participate in the driving decisions, Yusof et al. [160] express concern that interruptions to ensure passenger
comfort may shift attention from the NDRT and affect the passenger experience and performance in tasks such
as reading. Indeed, an experimental study assessed the average demand that different NDRTs pose and classified
tasks into those that require visual and cognitive demand (smartphone, computer, read, internet, texting), visual
and psychomotor demand (eat, drink, makeup, dress up, cleaning), and almost no demand (sleep, nothing) [66].
Similarly, the effectiveness of explanations is affected by the NDRT engagement [162] and the modality channels
they occupy [15]. For example, visual explanations may not be sufficient to provide information while passengers
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are engaged with an NDRT [15, 157]. In contrast, auditory explanations may be more effective when the passenger
is visually engaged with an NDRT, as they do not compete for the same attentional channel [108, 162].
In summary, while NDRTs are a key benefit of highly automated vehicles [106], they can compete for the

passenger’s attention and working memory, potentially reducing situation awareness and affecting the passenger
experience. Explanations from the vehicle can support situation awareness, but the timing and modality of these
explanations should be carefully chosen to minimize interference with the passenger’s ongoing NDRTs. As our
demand for explanations and the effect of explanations may change depending on the engagement and the type of
NDRTs, this study aims to investigate this relationship. Specifically, this study seeks to collect passenger demand
datasets for explanations amid their naturalistic NDRTs, understand the distribution of NDRTs in a naturalistic
driving environment, and examine the extent to which passengers demand explanations during such tasks.

2.3 Wizard-of-Oz (WoZ) Method for Automated Vehicles Research
Despite the need for studies assessing passenger behavior in automated vehicles, given their anticipated prevalence
in the near future, current regulatory and legislative issues have not been fully addressed, making it challenging
to study passenger behavior in vehicles with higher SAE levels. Existing automated systems rely on drivers for
monitoring and supervision, which hinders the ability to study driver behavior during their disengagement from
driving tasks. To overcome these regulatory and ethical issues associated with testing actual vehicles with SAE
levels 4 or higher, researchers often employ the WoZ methodology [24], a technique that creates the illusion of
automated driving for participants by concealing an experimenter acting as a hidden driver [93].
Researchers have utilized the WoZ method to study human behavior and interaction in automated vehicles

by concealing the wizard’ driver behind a partition, creating the illusion of an automated vehicle [9, 144]. This
approach has been used to investigate preferred driving styles [68], passenger experiences in automated vehicles
[34], robo-taxis’ [96], AV-pedestrian interaction [123], AR interfaces [38], and automated driving training [135].
In some cases, partitions have been replaced with video-see-through screens that hide the front driver side [29].
When the study requires the augmentation of automotive interfaces rather than the naturalness of the environment
itself, extended reality environments have been incorporated to conceal the wizard driver [135, 155, 156]. These
approaches allow researchers to investigate user behavior and interaction in a more realistic setting without
compromising safety or violating current regulations.
When investigating user aspects of future automated vehicles, researchers face challenges regarding the

naturalness or technical fidelity of their studies on either the car side or the environment side. Pai et al. [117]
compared passenger perceptions of automation in two conditions: one with actual algorithmic automation
and another employing a WoZ approach. The study found no statistically significant differences in participant
perception and behavioral performance between the two conditions, demonstrating the validity of the WoZ
method in studying human behavior in automated vehicles [117]. Although driving simulators offer a safer way
to simulate driving situations with proven behavioral validity [44], they have limitations owing to their artificial
lab environment, which is inherently safe and provides different kinesthetic experiences from actual driving,
potentially leading to a different perception of driving [29]. The WoZ method can be considered when the feeling
of being on actual roads should be provided [29].

However, the WoZ method can present several methodological challenges. Firstly, the obtained results should
be independent of the driving wizard to ensure objectivity. Thus, different driving wizards should be able to
reproduce the same driving style consistently [103]. This can be achieved through training and the use of
predefined driving scripts or scenarios. Secondly, to ensure reliability, each individual driving wizard must be
able to reproduce the same driving behavior across different sessions consistently [9, 103]. Lastly, to maintain
validity, the simulation should appear and behave like real automation scenarios and create the illusion of riding
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an automated vehicle [103]. In other words, participants must be under the impression that they are interacting
with a genuine automated vehicle for the study to yield valid results [13].

In our study, we chose an on-road experimental environment to elicit passenger demands for explanations while
interacting visually and kinesthetically with simulated automated vehicle scenarios. We used the WoZ method
to maintain safety and adhere to ethical and legislative regulations while providing the illusion of riding an
automated vehicle (specific implementation measures in response to the methodological challenges are described
in section 3). However, the limitation of the WoZ method that user behavior in actual automated vehicles might
still differ from actual automated vehicles in the absence of the experimenter should be acknowledged (e.g., due
to the presence of an experimenter).

2.4 Predicting In-vehicle Interruptibility
The growing use of mobile computers for in-vehicle information and entertainment has heightened interest in
identifying opportune moments to ‘interrupt’ drivers with interactions as these systems can distract drivers and
challenge their cognitive resources [143]. Indeed, the effectiveness and acceptance of proactive interactions in
vehicles are sensitive to environmental and user contexts [161]. In manually driven vehicles, interaction design
focuses on identifying moments suitable for AI-initiated interruptions that do not distract drivers from safe
driving [5]. However, in automated vehicles, the context changes as passengers are no longer responsible for
driving and are more likely to engage in NDRTs. This shift requires a new focus, moving from managing NDRTs
during manual driving to providing relevant driving-related information during NDRTs [73].
Passenger interruptibility could differ depending on the task the passenger is performing [54]. Moreover,

explanations that adapt to risk levels are preferred to constant explanations when the information is excessive
[64]. In this context, AI in vehicles could identify the most appropriate moments to offer explanations about
the road environment, enhancing passenger awareness while allowing them to enjoy NDRTs without excessive
preoccupation with the vehicle’s driving status. Our study draws from in-vehicle interruptibility research and
aims to shift the focus from modeling moments of interruptibility during NDRTs to moments of explainability for
passengers engaged with NDRTs.

2.4.1 Sensor-based approaches to model in-vehicle interruptibility. As interruptibility aims to model opportune
moments to interrupt the driver, research in this field focuses on modeling both the timing and content of
proactive vehicle interactions, considering driving situations and driver characteristics [5]. Since driving sensors
or passenger sensors can capture events or states in driving and physiology, various sensor-based approaches have
been employed to gather data on driving and passenger contexts for modeling these situational and user-related
features. For instance, Kim et al. [61] utilized On-Board Diagnostics (OBD), Controller Area Network (CAN), and
dashcam data to determine the appropriate timing for proactive audio-verbal tasks in cars, aiding in the creation
of a model that predicts the need for such tasks across various driving conditions [62]. Similarly, Semmens et al.
[130] developed an on-road driving dataset, incorporating GPS, CAN, and video data, to assess a driver’s readiness
for proactive interactions with in-vehicle voice assistants. Wu et al. [148] employed Inertial Measurement Unit
(IMU), CAN, and interoception sensors modeling passenger behavior and states to determine moments for
proactive interactions. These studies demonstrate the efficacy of sensor-based approaches to capture relevant
contextual information for modeling in-vehicle interruptibility. Building on this approach, our study utilized
cameras, automotive sensors, and physiological sensors to gather data on vehicles’ operation and passenger
behavior and state to model in-vehicle demand for explanations.

2.4.2 Related Datasets: Dataset for In-vehicle interruptibility. The development of datasets could advance in-
vehicle interruptibility research, as the prediction of opportunemoments predominantly relies onmachine learning
algorithms to interpret driving and passenger-related sensor data. These datasets enable a wider exploration of
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situational and user-related features, informing the design of proactive vehicle interactions. For example, the
public on-road driving dataset for driver interruptibility created by Semmens et al. [130], which incorporates
GPS, CAN-bus, and video data, has enabled further research, such as Wu et al. [148] utilizing the dataset to assess
a driver’s readiness for proactive interactions with in-vehicle voice agents. Despite the potential benefits datasets
could bring, only a few datasets for modeling in-vehicle interruptibility are publicly available (e.g., INAGT dataset
[130]), which deals with manually driven vehicles. In our study, we built upon these approaches and utilized
cameras and physiological and driving-related sensors to gather comprehensive data on passenger behavior
and state, with the aim of creating a dataset that can be used to model the demand timing for explanations in
automated vehicles.

2.5 Generating Explanations for Automated Vehicles
As automated vehicles are safety-critical applications of machine learning, interpretable models to make driv-
ing decisions transparent have been developed. They were designed to support various stakeholders, such as
developers, regulators, and accident investigators, in developing, inspecting, and establishing guidelines by
providing accountability in decision-making [116]. In this study, we focus on end-user passengers as the main
stakeholders and aim to model the actual demand for explanations from the passenger perspective, measuring ex-
teroception, proprioception, and interoception data (see Table 1 for comparison with other datasets for in-vehicle
interruptibility and explainability).

2.5.1 Machine Learning Approaches for Explanation Generation. To explain the decisions of machine learning
algorithms for automated driving, explainable models have been proposed. They generate visual or class-wise
reasoning behind driving decisions [65, 149]. Some studies introduced textual explanations for more detailed
reasoning [67]. Textual reasoning capabilities of transformer models have led to driving scene-based captions that
are aware of the driving actions [57]. Recent advances in large language models (LLMs) are even incorporating
these models in the reasoning and generation of explanations [150, 152].

Despite the direct impact passengers have with these explanations, most studies focus on generating accurate
explanations causal to driving decisions rather than the intelligibility and effective delivery of these machine
learning-generated explanations. Indeed, passengers’ needs for explanations can vary depending on their behavior
and their cognitive and emotional states within the vehicle. This is mainly attributable to the fact that the currently
available datasets for explanations are designed for general purposes covering most of the stakeholders, rather
than focusing on the end-user passengers. Only a few studies [77, 113, 114] have incorporated passenger aspects
in their experiments. In response, despite the known effect of explanations on passenger experiences, the impact
of these algorithms on actual passengers under in-situ driving environments has been underestimated.

2.5.2 Related Datasets: Dataset for Explaining Automated Vehicles. Most datasets for generating explanations in
automated driving focus on data and annotations for detecting failures or interpreting driving decisions. Typically,
these datasets provide explanations in the form of cause-and-effect for accidents [153, 154, 158], centered on
driving videos that account for the outcomes of various driving scenarios. Some datasets have been developed to
generate textual explanations for automated vehicle passengers, detailing the actions taken by the vehicle and the
reasons behind them [65, 67, 149], developed from selected segments of the Berkeley Deep Drive dataset [159].
The introduction of datasets specifically designed for driving instructions [28] and traffic scene explanations [125]
has accelerated the development and application of natural language processing techniques in these domains.
These data offer detailed annotations for each moment of the included drives, which makes them particularly
well-suited for generating continuous or on-demand explanations. However, these datasets may be less effective
in generating selective explanations in critical situations where trust and anxiety can be challenged.
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Although driving videos are an efficient and reliable data collection method that enables the integration of
multiple annotator inputs, they may not fully capture the nuanced demands of actual passengers within automated
vehicles or mirror the complexities of real-world driving experiences. Shen et al. [132] introduced the concept
of necessity scores for explanations, annotated by individuals watching driving videos. While these studies
effectively assessed the need for explanations, watching videos may not fully capture the risk that passengers of
automated vehicles might experience [137]. Given the impact of risk levels on passenger experiences and attitudes
towards explanations [48, 81], especially among first-time users of automated vehicles [138], there is a need
for further investigation into passengers’ real-time demands and experiences on the road to tailor explanations
and strategically align them with passengers’ needs and concerns in automated vehicles. To address this, we
extended the data collection environment to actual roads where passengers can experience anxiety, seek situation
awareness, manage working memory, experience cognitive load to maintain it, and perform non-driving related
tasks that compete with it. In this work, we suggest a dataset in a more ecologically valid setting by incorporating
on-road experimental settings and involving passengers in the automated driving scenarios to model their in-situ
demand for explanations.

3 Method
In this study, we aimed to gather contextual information that included details about the surrounding environment,
the vehicle’s driving status, and various aspects of the passengers’ states, such as physiological responses or body
posture, in relation to their need for explanations of situation awareness. To achieve this, we outfitted a vehicle
with a set of sensors and conducted experiments with human subjects to determine their need for explanations.
The selection of sensors for our study was guided by a literature review [136] and a design space analysis for
in-vehicle interaction [53], which highlighted the importance of kinesthetic, electrodermal, tactile, thermal, and
cardiac modalities, alongside visual and auditory input. This data collection took place while the vehicle was
believed to be driven via automation but was actually driven by a wizard driver. In the following subsections, we
describe the sensor sets that were used and the format in which they were recorded, as well as the detailed data
collection procedure, including the experimental protocols and driving scenarios. Implementations used in the
paper is available at https://github.com/GWANGBIN/timelytale.

Fig. 1. (a) Model illustrating the dimensions of the exteroception sensors installed in the vehicle. (b) Actual vehicle with the
exteroception sensors installed.
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Dataset Purpose Exteroception Proprioception Interoception Annotation Size

INAGT
[130,
148]

Predicting the optimal
moments for proactive
driver interruptions

Camera GPS, CAN,
IMU

Camera,
Physiological
Responses

Yes/No for driver
interruptibility

50
hours

BDD-X
[67]

Text explanations for
AV actions Camera GPS No Text explanations for

video segments
77

hours

BDD-
OIA
[149]

Associating objects
with actions and
reasons in driving

Camera GPS No Action categories and
text explanations

31.8
hours

Sampled
BDD-A
[132]

Modeling explanation
necessity for AV videos Camera GPS No Gaze data, necessity

scores for explanations
3.1

hours

DoTA
[153,
154]

Predicting traffic
anomalies from driving
videos

Camera No No Annotations for traffic
anomalies

20.3
hours

CTA
[158]

Identifying unusual
traffic events Camera No No Cause and effect in

scenarios
9.5

hours

HDD
[122]

Detecting driver
behavior and
interactions in manual
driving scenarios

Camera, 3D
LiDAR

GPS, CAN,
IMU No Driver behavior and

causal relationships
104
hours

DRAMA
[89]

Visual reasoning of
driving risks associated
with important objects

Camera CAN, IMU No

Important object
bounding boxes,
free-form caption for
risks and interactions

9.8
hours

Rank2Tell
[125]

Predicting reasoning
and importance in
traffic scenes

Camera, 3D
LiDAR GPS, CAN No

Questions and
interpretations of
scenes

0.64
hours

Talk2Car
[28]

Developing AVs that
understand and
execute natural
language commands

Camera, 3D
LiDAR,
RADAR

GPS, IMU No
Bounding box
annotations, written
commands

4.72
hours

Ours

Modeling the
explanation type and
timing passengers in
automated vehicles
demand

Stereo
Camera, 3D

LiDAR

GPS, OBD-II,
IMU

Depth Camera,
LiDAR Camera,
Physiological
Response,

Thermal Image,
Seat Pressure

Timing and contents
of passenger’s demand
for explanations

15.2
hours

Table 1. Summary of the currently available datasets relevant to in-vehicle explanations and related services, such as
interruptibility (INAGT) and language commands (Talk2Car). Following the classification by Omeiza et al. [116], we categorize
sensor types as exteroception, proprioception, and interoception. Additionally, we introduce the concept of interoception to
account for attempts to model passengers’ actual behaviors or states.
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3.1 Apparatus and Sensor Settings for Data Acquisition
3.1.1 Exteroception Sensors for Surrounding Environments and Objects. In explainable driving, machine-generated
explanations primarily utilize camera data. This type of data has become increasingly vital for producing vision-
language explanations, particularly with recent advancements in large-scale vision-language models tailored for
driving contexts. The generation of driving explanations is a typical downstream application of these models. To
comprehensively capture the environmental contexts in our dataset, we employed a stereo camera and a LiDAR
sensor to capture object recognition data, encompassing data for traditional computer vision, stereo vision, and
3D vision with a point cloud. The LiDAR sensor was mounted on top of the vehicle’s roof so that other parts of
the vehicle did not occlude it. The stereo camera was mounted on top of the roof of the vehicle, positioned directly
in front of and below the LiDAR sensor to ensure that neither device obstructed the other (refer to Figure 1 for
the detailed dimensions of the installed sensors).
Specifically, a ZED stereo camera from Stereo Labs was installed to capture the driving contexts. The camera

provides a 90 ◦ horizontal and 60 ◦ vertical field of view. We recorded the stereo image of the driving context at a
resolution of 1344×376 and a frame rate of 15fps. ZED camera images were stored as separate PNG files, each
named according to the UNIX time at which they were captured.
We included a 3D LiDAR sensor in our dataset for richer 3D environmental information, particularly in

challenging scenarios, such as night conditions or sudden lighting changes in tunnels. This addition provides
direct depth information. Specifically, we utilized the VLP-16 from Velodyne, which offers a 360 ◦ degree horizontal
and 30 ◦ vertical field of view with a 0.2 ◦ horizontal and 2 ◦ vertical angular resolutions. Consequently, our
dataset comprised a point cloud with 16 vertical layer channels and 1808 horizontal scanning channels. The
point cloud data were collected at a refresh rate of 10 Hz, with each point in the cloud defined by the x, y, and z
coordinates, including light reflectance intensity data for each point.

3.1.2 Proprioception Sensors for Vehicled’s Movements. We measured GPS data during driving to track changes
in the vehicle’s latitude and longitude, aiding in the modeling of the demand for explanations with respect to the
geolocations. We used a ZED-F9R dual-band GNSS module from u-blox, which was integrated with a PC via a
microcontroller unit (MCU). With the antenna positioned in the middle left of the car’s roof, we collected data on
latitude, longitude, height above mean sea level, velocity north (toward the north), velocity east (toward the east),
velocity down (toward the Earth’s center), and heading (direction of movement in degrees from true north) at a 5
Hz refresh rate, each with a UNIX timestamp.
Linear accelerations and angular velocity are used to monitor the vehicle’s driving behavior, driving-related

events, and road conditions [99]. Also, abrupt changes in motion can indicate sudden vehicle movements and
their impact on in-vehicle interruptibility [148]. To capture these data, we installed a 9-axis HWT905 IMU sensor
from Wit Motion in the middle of the vehicle. We collected 3-axis acceleration, 3-axis angular velocity, and 3-axis
angle data at 50Hz via UART/USB to the PC, with each data point marked with a UNIX timestamp.

To collect the vehicle’s operational data, such as speed, throttle, brake, and steering angles, we used the ELM327
OBD-II module. These features, while traditionally associated with driver interruptibility in manual driving
[61, 69], still represent the vehicle’s operational behavior and dynamics in the context of automated driving. The
OBD-II data were read via Bluetooth to the MCU and then to the PC via a serial port and recorded on the PC at a
frequency of 5 Hz, along with the corresponding UNIX timestamp.

3.1.3 Interoception Sensors for Passenger’s Pose and States. Action Recognition Sensors. To provide information
about the passenger’s head and body posture as well as the NDRTs the passenger was performing, action
recognition sensors were installed in front of the passenger.We used two cameras with RGB and depth information:
an D435 depth camera from Intel RealSense and an L515 LiDAR camera from Intel RealSense. The RGB and depth
images from the D435 camera were collected at 20 fps in 640x480 resolution, while the depth image stream from
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the L515 camera was gathered at 20 fps in 768x1024 pixels, all in PNG format. Considering the wider field of view
L515 camera has, we installed the camera on the dashboard to capture relatively whole body parts. Meanwhile,
D435 camera was placed higher to focus on the upper body parts, such as the torso, head, and arms, which
generally exhibit greater movement than lower body parts in cars.

As this setting involves continuously recording participants whose IDs are mapped with all other sensors and
behaviors, we aimed to respect potential privacy issues and conform to the ACM code of ethics [45]. We provide
a grayscale depth image to measure or recognize driver postures, actions, and behaviors. Regarding the RGB
image, we offer different levels of data depending on participants’ consent levels. We provide the original data for
those who agreed to the release of raw RGB images. For other participants who refused the release of raw RGB
images but agreed to the use of processed data, we provide skeletal tracking and facial mesh data extracted from
the RGB data using the Mediapipe framework [87]. This approach minimized the amount of data retained and
eliminated potentially identifiable images to ensure participant privacy.

Thermal Imaging In our study, we recorded thermal images of passengers’ faces, considering the relationship
between nasal and forehead temperature differences and their cognitive load [2, 86], arousal [30], and attention
[1]. For this purpose, we used the Lepton 3.5 module from FLIR, capable of measuring temperatures between -10
to +450 ◦𝐶 with a 5% accuracy, suitable for facial imaging [50]. Data from this module were collected at a rate
of 8.7 Hz with a resolution of 160×120, covering a 57 ◦ horizontal and 71 ◦ vertical field of view. The thermal
camera images were stored as separate PNG files, each named according to the UNIX time they were taken.
Tactile Pressure Seat.
The touch, weight, and centroid placement on the car seat vary with the torso, head, and lower body positions.

Consequently, pressure sensing on the driver’s seat can serve as an unobtrusive indicator of driver posture [164].
Indeed, since the pressure also varies depending on the position of the user’s hands, it can be used to identify the
passengers’ NDRTs such as entering, leaving, drinking, and accessing the glovebox [60] or forward gaze, cell
phone use, and sleeping [112]. Pressure sensing can also assess a driver’s availability to take over control during
automated driving [121]. As shared mobility is predicted to be one of the most imminent forms of automated
vehicles [91], privacy-preserving sensing for services in these shared environments is becoming increasingly
important, and tactile seats can also contribute to enhancing privacy while providing relevant pose information.

Fig. 2. (a) Resistive tactile sensors installed on the seat and backrest of the car seat. (b) Principle underlying the pressure
measurement of these sensors through resistive changes across the matrix.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 109. Publication date: September 2024.



109:12 • Kim et al.

Given these relationships, we collected pressure sensing data in our study to offer a resource for potential analyses
that model seat pressure patterns and passenger behavior in automated vehicles.
Following Zhao et al. [164] and Khazar et al. [60], we installed a resistive-sensing-based tactile seat in our

vehicle, covering both the seat and backrest areas (see Figure 2 (a) for reference). However, it should be noted that
while previous studies have demonstrated the feasibility of using tactile seats as sensors to measure driver posture
and activity, the pressure data could also reflect road bumps and vibrations in on-road driving environments.
This could introduce noise when classifying NDRTs, although it may also contribute to passengers’ demand for
explanations.
This tactile seat consists of a 32×32 electrode array on each side (1024 sensors), designed to sense pressure

from electrical signals. We assembled the tactile seat using piezoresistive carbon polyolefin film (Velostat, Desco),
silver-plated conductive thread (HC40, Madeira) for detecting pressure, and non-conductive thread for secure
attachment. We used the Loen LE-6040 embroidery machine in the fabrication process to ensure the robustness
and reliability of the tactile sensors, as compared to hand-crafting.
As depicted in Figure 2, each sensing array includes orthogonally aligned electrodes on both sides of the

piezoresistive films, securely stitched together with non-conductive thread. At the intersection where the two
conductive threads cross, the piezoresistive film between them changes its resistance under pressure, allowing us
to measure the pressure at each contact point. We employed a non-inverting operational amplifier (op-amp) with
a reference voltage, coupled with an analog-to-digital converter, for measurement of slight resistance alterations.
When pressure is exerted on a tactile seat, it modifies the resistance between two layers of conductive wire arrays.
This change in resistance varies the voltage output from the op-amp, enabling the identification of horizontal
and vertical conductive threads at the pressure point. The identified coordinates were then sent to the computer
via a microcontroller unit. Each sensor can measure pressures up to 14kPa, with the highest sensitivity of 0.3kPa
achieved through resistance changes [88].

To capture and record the pose and physiological data, we adopted the modified version [131] of the ActionSense
dataset framework [27]. This framework is particularly adept at reliably recording heterogeneous data, including
array-based tactile resistive sensing signals, allowing continuous monitoring of the passenger’s physical state
and interactions with the seat. Each data frame was timestamped using the UNIX timestamp format at the time
of acquisition and saved in HDF5 file format with two separate CSV files for the backrest and seat.

Physiological Responses Our dataset was designed to provide real-time data on passengers’ actions and states,
including their physiological responses that are indicative of driver’s cognitive [71] and emotional arousal [70],
driver situation awareness [63], and event-related responses (e.g., event-related electrodermal activity (EDA)
[25, 82]). For this purpose, we utilized the E4 wristband, which features reliable data acquisition capabilities
in environments where motion artifacts are common (e.g., in-vehicle environments) owing to its reduction
of and compensation for motion artifacts [42]. This system captured various physiological metrics, including
passenger galvanic skin response (GSR) at 4 Hz, interbeat interval (IBI) at 1 Hz, blood volume pulse (BVP) at 64
Hz, temperature at 4 Hz, and XYZ raw acceleration at 32 Hz. These measures are indicators of user arousal in
cars [86]. Each data point was timestamped using the UNIX timestamp format at the time of acquisition and
saved as CSV files.

The collected data was stored in two formats: a comprehensive HDF5 file for integrated analysis and separate
CSV files for each data channel. In addition, the streaming of physiological data was recorded in a video file,
alongside the seat pressure data (refer to Figure 3). This video recording was intended to serve as a visual reference
for the experimenter to identify any sudden changes in the passenger’s physiological response recording because
the E4 wristband requires its own server to stream data (by uploading and fetching), while all other sensors are
streamed natively. Therefore, we used videos to monitor any disconnect from the network, considering that
the experiment was conducted in a vehicle driving on an actual road environment. While designed for data
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collection purposes, the video recording can also serve as a visual reference to help identify any abrupt changes
in passengers’ physiological states during the use of the data.

Fig. 3. Video recorded of the streaming of seat pressure and physiological sensors. Tactile pressure sensing data and
physiological responses captured from the E4 wristband were recorded as a video plot during the experiments. Note that
subtitles in blue boxes were added to the figure for improved legibility, although they were not present in the video itself.

3.2 Automation Wizard
To navigate the ethical and regulatory concerns associated with automated vehicles, we implemented the WoZ
methodology [24], which creates the illusion of automated driving for participants with an experimenter acting
as a hidden driver [93]. We adopted the RRADs method by Baltodano et al. [10], which conceals the ‘wizard’
driver behind a partition. To ensure the validity of the WoZ method, we took measures to make the presence of
the wizard driver unnoticeable and maintain the illusion of automated driving for our participants.
We installed sensors both outside and inside the vehicle to contribute to the illusion of an actual self-driving

vehicle. To hide the driver, we installed a half-mirror glass partition between the driver and passenger compart-
ments, a technique used in deceiving users considering the automation of AI speakers [4]. The glass partition
featured a half mirror in the upper part and a full mirror in the lower part. To protect the identity of the ‘wizard’
driver, we illuminated only the passenger side, ensuring that the half-mirror was half-transparent only when
viewed from the driver’s side. The seating arrangement of the driver and passenger was planned to complement
this setup, ensuring that the passenger could not see the driver, even when the upper half of the glass was
transparent. Conversely, the driver could see the right side mirror through the transparent upper half for safe
driving (see Figure 4 for the viewpoints of the passengers).
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Fig. 4. (a) Experimental settings from the passenger’s viewpoint: the wizard driver is concealed by a partition. (b) Experimental
settings from the wizard driver’s perspective: the wizard driver has an unobstructed view of the side mirror for safe driving.

We instructed participants that the wizard driver was present only due to regulatory requirements, and they
were led to believe that the driver would only take control before entering and after exiting the experimental
route. After the experiment, no participant reported noticing the wizard driver driving as it was unseen from
their side, and the presence itself was explained. For the experiment’s objectivity, the role of automation wizard
was done by two instructed drivers: a 26-year-old male with 6 years of driving experience and a 30-year-old
male with 10 years of driving experience. Both drivers were informed about the study’s objectives and were
tasked with the role of wizard driver, with their primary responsibility being to follow the designated route. For
a reliable and reproducible experiment for different participants, these drivers were trained on the driving route.

3.3 Procedure
The driving scenarios and experimental protocol outlined below were used to conduct the user study.

3.3.1 Protocol. Before commencing the experiment, the participants were equipped with an E4 wristband
and asked to complete questionnaires regarding their age and driving experience. The experiment involved
approximately 30 minutes of naturalistic driving.

To encourage naturalistic passenger behavior, we did not impose any specific NDRTs during driving. Instead,
we provided snacks, books, and magazines for potential interactions, and the participants were allowed to use
their own cell phones. While engaging in these NDRTs, the participants were instructed to immediately inform
the experimenter whenever they required additional situation awareness of the car’s decisions. They were asked
to specify the exact explanation needed, which could include the vehicle’s driving actions and/or the underlying
reasons. To accurately record the timing of these requests, participants were asked to say ‘now’ when they needed
more explanation, followed by a marker from the experimenter, before detailing the specific explanation required.
The explanations required by the participants were coded by consensus between two experimenters, who were
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fully knowledgeable about the study and seated at the back. While we acknowledge that it could interfere with a
more natural experience in automated vehicles to understand the passenger’s in-situ demand, follow-up questions
were sometimes necessary to ascertain the specifics of the ‘what’ and ‘why’ behind each request when initial
details were insufficient. An experimenter reviewed these interactions and annotations post-experiment against
the recordings for confirmation. Although the participants were advised that they could stop the experiment at
any time if they experienced discomfort, such as motion sickness, no such requests were made.

The coding of explanation data within the context of thematic analysis followed a deductive approach. While
we did not restrict the type or content of explanations provided by participants, the experimenters prepared an
initial set of codes based on the explanation annotations from Kim et al. [67]. These explanations were refined
and unified when they referred to the same concept, despite variations in participant expression. However, when
the semantic content or the type of explanation differed—whether addressing the ’what’ aspect or the ’why’
aspect—they were maintained as distinct codes. A detailed description of the explanation coding is available in
the Appendix A.

3.3.2 Driving Scenarios. To facilitate naturalistic experiments in a controlled environment, we set a 14.8km
experimental driving route that traverses urban roads, arterial roads, and highways (refer to Figure 5). The route
features diverse driving events, potentially leading to various situations influenced by traffic lights and traffic
conditions. However, subtle lane changes are not predefined in the driving events of the route, because they are
heavily reliant on in-situ environments and interactions with other road users.

Fig. 5. Experimental driving route encompassing urban road, highway, and arterial.

• Road #1: Urban Road (speed limit: 60 km/h) - Right turn at an intersection with two crosswalks and traffic
light, school zone, straight travel at three intersections with traffic lights and two crosswalks each, one
underground tunnel, left turn at an intersection with two crosswalks and a traffic light.

• Road #2: Highway (speed limit: 100 km/h) - Uphill drive and right turn for entry, sharp right turn for exit.
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• Road #3: Urban Road (speed limit: 60 km/h) - Two left turns at intersections with traffic lights and two
crosswalks, three instances of going straight at intersections with traffic lights and two crosswalks each, two
left turns at intersections with two crosswalks and a traffic light, school zone, right turn at an intersection
with a crosswalk and traffic light, two instances of going straight at intersections with a single crosswalk
and traffic light, going straight at an intersection with two crosswalks and traffic light, crossing a river via
bridge, two instances of going straight at intersections with two crosswalks and traffic light, left turn at an
intersection with two crosswalks and a traffic light, straight travel at an intersection with two crosswalks
and a traffic light.

• Road #4: Arterial (speed limit: 80 km/h) - Uphill drive and right turn for entry, sharp decline for exit.
• Road #5: Urban Road (speed limit: 60 km/h) - Two left turns at intersections with two crosswalks and a
traffic light, crossing a river via bridge, two instances of going straight at intersections with two crosswalks
and a traffic light, three instances of going straight at intersections with a single crosswalk and traffic light,
right turn to enter the destination.

3.4 Participants
We recruited 29 participants (10 females and 19 males) with an average age of 30.1 (SD = 10.2, min = 20, and max
= 67). Since we assumed highly automated vehicles with SAE levels 4 and 5, we did not restrict our participants
to driver’s license holders. Of the participants, 20 had driver’s licenses, with an average of 5.9 years of driving
experience (SD = 5.4, min = 1, max = 20).

3.5 Ethics
All procedures conformed to the principles of the Declaration of Helsinki and were approved by the Institutional
Review Board. Prior to the experiment, participants were briefed about the study. They agreed to participate
and provided consent for the use and distribution of collected data for scientific research purposes. Given the
importance of privacy in data collection, especially with video data where personal identity can be specified, we
prioritized the anonymity of our participants. To achieve this, the raw RGB video data is provided only for the
participants who provided consent; otherwise, we provide extracted skeleton and facial landmark positions and
thermal and depth imaging only where individual identity is not discernible.

Fig. 6. (a) The driving time each participant experienced and (b) the number of explanation demands during the drive.
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4 Result

4.1 Descriptive Statistics for the Data
4.1.1 Demand for Explanations. On average, the driving experiment involved the collection of multimodal
exteroception, proprioception, and interoception data, lasting approximately 30.5 minutes for each of the 29
participants, with a standard deviation of 7.1 minutes. The shortest duration recorded was 18 minutes for one
participant to complete the experimental route, whereas the longest was 61 minutes, attributed to varying traffic
conditions from daytime to nighttime, particularly during evening rush hours. Figure 6 (a) illustrates the dataset’s
composition in terms of the duration.

Participants requested explanations for an average of 4.5 times during the ride, with a standard deviation of 5.3
(as shown in Figure 6 (b)). Two participants did not seek any explanations throughout their ride, whereas four
participants requested more than 10 explanations, reaching up to 19 times during their drive. However, there was
no significant correlation between the frequency of explanation demands and driving duration, as indicated by a
Pearson correlation coefficient of 𝑟 (27) = -0.058, 𝑝 = .766.

4.1.2 Passenger NDRTs during the Drive. In this section, we report on the non-driving related tasks (NDRTs) that
participants performed during the experiment. Figure 7 illustrates the NDRTs each participant engaged in during
the drive, with the duration normalized over the total driving time. Although participants were instructed to
behave naturally and engage in NDRTs at their own discretion, they performed 11 types of NDRTs (accessing and
managing the items in and on the dashboard compartment, drinking water, eating a snack, having a phone call,
interacting with a mobile phone, reading a book, reading a magazine, reading a paper, relaxing in the passenger’s
seat, watching inside the car, and watching outside the window, detailed format is illustrated in subsection B.5).

Figure 8 presents the time allocation for various NDRTs in our study. We compared these findings with those
of Detjen et al. [29], who conducted a similar on-road study observing NDRT of passengers in automated vehicles.
Our results show that participants spent the majority of their time interacting with mobile phones (42.38%),
followed by watching outside the window (28.72%), reading books (10.70%), and relaxing (3.65%). While specific
distributions varied to some extent, both our study and that of Detjen et al. [29] found that participants primarily
allocated their time to watching out of the window and using smartphones, followed by reading and listening to
books.

We compared the frequency of NDRTs in terms of occurrence during the experiment with Pfleging et al. [119],
who used an in-situ survey to elicit anticipated preferred NDRTs, and Detjen et al. [29], who employed an on-road
experiment to observe NDRTs. To align with the labels used in previous studies, we merged some of our NDRT
labels (e.g., ‘eating a snack’ and ‘drinking water’ were combined into ‘Eating/Drinking’).
Figure 9 shows the occurrence of NDRTs in terms of participant frequency. Despite differences in setup,

instruction, and the demographic background of the participants among the experiments, 7 out of the 10 NDRT
labels mutually reported in both Pfleging et al. [119] and Detjen et al. [29] were also observed in our study. These
activities exhibited similar frequencies to those in Detjen et al. [29], which also used an on-road experiment (e.g.,
watching out of the window, calling, reading).

However, some tasks differed depending on the setup and labeling conventions. For instance, our study involved
only one participant per experimental session and did not include interactions with multiple passengers, whereas
such interactions were reported in surveys [119] and other studies [29]. Additionally, our experiment specifically
labeled activities such as watching inside the car and interacting with the dashboard compartment. While both
Pfleging et al. [119] and Detjen et al. [29] differentiated between general smartphone use and smartphone typing,
our study did not make this distinction in categorizing mobile phone interactions.
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Fig. 7. Timeline of NDRTs performed by each participant during the automated driving experiment.

Fig. 8. Time shares of NDRTs performed by participants during the automated driving experiment.
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Fig. 9. Frequency of NDRTs in terms of participant occurrence during the automated driving experiment, compared to the
findings of Pfleging et al. [119] and Detjen et al. [29].

Fig. 10. Types of explanation demands required by participants, classified as ‘what’ and ‘why’ explanations.
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4.2 Type and Content of Explanation Demands
To understand the type of explanation demands, we classified the collected requests into ‘What’ and ‘What+Why’
categories, following the ‘action’ + ‘justification’ framework used by Kim et al. [67], which generated explanations
for driving behavior from videos. It is also consistent with the ‘simple’ (content) and ‘attributional’ (content and
reasoning) explanations described by Ha et al. [48]. Despite differences in the framing wording, our classification
aligns with the frequently used ‘How’ (how the vehicle would behave or respond; ‘what’ in our case) and ‘Why’
(the reason for it) framework [74, 90]. Of the collected explanation demands, 50.7% were of the ‘What’ type,
focusing on actions, while 49.3% were of the ‘What+Why’ type, requiring reasoning behind actions. Although we
did not apply the framing during the data collection process and were open to ‘Why’ only explanations, after the
classification, we found no demands solely for ‘Why’ justification without an accompanying action explanation.

We also classified the type of explanation needed depending on the actions to be described within ‘what’ and
‘which’ types of explanations (Figure 10). In the specific requirements for ‘what’ explanations, participants most
commonly asked about stopping behaviors (30.32%). This was followed by inquiries about deceleration (22.58%),
turning (17.42%), and lane changes (13.55%). There were also questions about starting (7.10%) and accelerating
(5.16%), as well as requests for information on specific road features such as highways or merging areas. Regarding
‘why’ explanations, 50.77% of the time, participants did not seek additional reasons after the action was explained.
When they did, the most common queries were about traffic lights (23.85%), traffic conditions (14.62%), and site-
or destination-specific details (7.69% and 3.08%, respectively). These findings are consistent with Wiegand et al.
[146], where participants often required explanations forecasting the vehicle’s movement. Similarly, another
study [145] found that participants in simulated driving environments needed explanations in unexpected driving
situations, such as abrupt inertial movements due to turns, stops, lane changes, accelerations, etc.
To further investigate the interrelation between the contents of ‘what’ and ‘why’ explanations, we utilized a

Sankey diagram to connect ‘what’ and ‘why’ explanations (see Figure 11). Explanations regarding decelerating,
accelerating, stopping, and starting behaviors often necessitate additional reasons, such as traffic status or lights
(E.g., ‘The car slows down and stops due to traffic’, ‘The car stops because the traffic light is red’). Conversely,
explanations of actions such as lane changes or turns typically do not require accompanying reasons. Moreover,
the demand for road-related explanations was not frequently associated with the reasons for these actions.

Fig. 11. Sankey Diagram relating ‘what’ (action) and ‘why’ (justification) aspects of in-vehicle explanation demands. About
half (50.77%) of the explanation demands are for ‘what’ explanations only, without requiring ‘why’ justifications.
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4.3 Taxonomy of Required Explanations
4.3.1 Data Processing and Clustering Approach. To provide a comprehensive understanding of the types of
content in the required explanations within our collected data, we illustrate the composition of these explanations
according to the themes they address. To analyze the taxonomy of the explanations, we translated the original
deductive coding (within the context of thematic analysis) for passenger demand into binary coding with presence-
absence within the context of content analysis. This presence-absence coding was designed to quantitatively
illustrate the frequency of specific word labels from the original deductive-coded explanation demand, allowing
multiple labels to be present for a single explanation (multi-label encoding). We expanded the number of label
codes for each explanation, coding the explanations with 21 distinct labels: turn, right, left, speed, accelerate,
decelerate, lane change, start, stop, exit, enter, road, highway, school zone, merging, traffic, traffic light, red,
yellow, green, and destination.

For quantitative analysis of label frequency within explanation demands, we then clustered the required expla-
nations that were coded into presence-absence labels using the K-means clustering algorithm. For visualization
and analysis, the dimensionality of the data was reduced using uniform manifold approximation and projection
(UMAP), with the target dimensionality set to 2 for visualization in a two-dimensional space. The optimal number
of K-means clusters was determined using silhouette analysis, which measured the compactness and separation
of clusters, with a higher silhouette score (close to 1) indicating better clustering. Based on the silhouette analysis,
the optimal number of clusters for the given dataset was found to be 6, with a silhouette score of 0.958. We
describe the six distinct types of frequently required explanations as visualized in (Figure 12).

Fig. 12. Taxonomy of the required explanations clusters among the collected data, mapped on the UMAP with frequency
count and word clouds for each cluster presented.
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4.3.2 Clusters of Required Explanations. Cluster 1: Decelerate and stopping behavior due to traffic. This type
shows the need for explanations in scenarios where the car decelerates or stops in response to traffic conditions.
Passengers asked for explanations for the slowing down or stopping behavior. In some situations where the
vehicle slows down and then stops, some people demanded explanations about the deceleration, some people
demanded explanations for the stopping only, while others asked for both.

Cluster 2: Turning right and left. This type shows the demand for explanations for abrupt changes in rotational
inertia, which is the turn the car makes on roads. Some passengers required these turns to be preceded by
explanations in front of traffic lights, which included simultaneous explanations of the vehicle’s start, stop, and
lane change during its wait at the intersection, along with the future turn explanation. Referring to the Sankey
diagram (Figure 11), we observed that most turn-related explanations did not require accompanying ‘why’ type
justifications. Only a few cases included explanations for the justification, such as the traffic status.
Cluster 3: Stopping behavior due to a red light. This type explains the need for explanations for the vehicle’s

stopping behavior when it stops in front of a red light to wait for traffic. While passengers mostly wanted an
explanation about the stop or the stop and waiting behavior, some of them asked about the deceleration and the
stop.

Cluster 4: Starting/accelerating behavior due to a green/yellow light. This type illustrates the need for explana-
tions for abrupt starts and acceleration. Passengers asked to be informed about the change in acceleration when
the traffic light turns green and the vehicle starts, as well as when the vehicle accelerates a bit when the traffic
light turns yellow during its crossing. Some demanded explanations were solely for the speed, such as precaution,
without the need for reasons for acceleration. This cluster captures urban driving experiences characterized by
frequent stop-and-go movements controlled by traffic lights. It focuses on a car’s response to traffic signals and
specifically explains its transition from a complete stop to a starting movement.

Cluster 5: Lane change behavior due to entering/exiting a highway/merging/destination. This type addresses the
need for explanations for lane changes. The need for explanations for lane changes included various road type
situations such as entering or exiting a highway, merging points, or reaching a destination.
Cluster 6: Decelerating in a school zone. This type of explanation shows the need for an explanation of the

vehicle’s slowing down behavior when it enters a school zone. This cluster also addresses the car’s adaptive
maneuvers, such as slowing down in response to entering or merging points. These maneuvers are often in
response to varying traffic road situations or involve actions to enter, exit, or merge onto different types of roads,
such as highways or merging points.

4.4 Explanation Demands According to NDRTs
To understand how the NDRT a passenger was performing affected their demand for explanations, we analyzed
the NDRT at which passengers demanded explanations. In doing so, we used the NDRT data and applied a
10-second window around the moment the explanation demand was captured. We only designated the NDRT
as "watching outside the window" if the participant was labeled as watching outside the window before, at the
moment of, and after the explanation demand. This was done to confirm the true NDRT that the passenger was
engaged in when they felt the need for explanations, excluding the moment-wise heading up for quick glance or
reporting of explanation demand.

Figure 13 illustrates the explanation demand ratios per hour. The demand ratio was highest when passengers
were relaxing in the passenger’s seat and watching outside the window. These activities are categorized as
requiring low visual, auditory, cognitive, and psychomotor demand [66]. Accessing and managing items on
and in the dashboard compartment and eating a snack can be classified as NDRTs that require medium visual
and psychomotor and low auditory and cognitive demand [66] while reading and interacting with a mobile
phone belonging to NDRTs with high visual and cognitive and medium psychomotor demand [66]. The need for
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explanations was lower in these two scenarios than in scenarios where passengers were engaged with relatively
low-demanding NDRTs. While designing intelligible explanations in these scenarios for successful delivery is
still important [108, 162], the demand for explanations itself was higher when passengers’ attention resources
were less occupied with NDRTs.

The result is in line with the concept of self-interruption of drivers in conditionally automated vehicles, where
passengers’ self-interruption is meant to enhance their situation awareness [43]. This happens more often when
they have some level of situation awareness to develop further, as perception is the first stage followed by
comprehension and projection in Endsley’s situation awareness model [35]. Similarly, in our results, participants
were assumed to demand more explanations when they had some level of situation awareness regarding driving
compared to being disconnected from it owing to NDRTs. However, it should be acknowledged that our analysis
is preliminary, with a limited number of participants and explanation demands, and that the results should be
confirmed and could be strengthened with longitudinal studies.

Fig. 13. Explanation demand ratios per hour for different NDRTs.

4.5 Geo-Positioned Explanation Demands
As explanation demands were gathered with proprioception sensors, the demand can be visualized over an
actual map using GPS coordinates Figure 14 (a). We plotted the route characteristics to help understand the
sources of explanation demand. The analysis identified specific explanation-sensitive areas, particularly at major
corners or locations with significant changes in driving routes, path types, or areas with important traffic lights
or intersections. Comparing with Figure 5, key areas for explanation demand included transitions from urban
roads to highways, highways to urban roads, arterial roads to urban roads, and other junctions involving major
turns or changes in the route.
To visualize the area-specific sensitivity with intensity information, we created a grid-based heatmap (see

Figure 14 (b)). This heatmap illustrates the distribution of expressed explanation demands across various ge-
olocations, along the designated route. The numbers on the heatmap represent the count of GPS signals (10
Hz) annotated as ‘explanation needed’, plotted over a geographical grid. We also observed varying demands for
explanation types across different zones. As shown in Figure 14, certain areas, highlighted in black, demonstrated
a clear preference for either ‘what’ type (Figure 14 (c)) or ‘what+why’ type explanations (Figure 14 (d)).
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Fig. 14. (a) GPS data plotted on a satellite image of the experimental site. (b) Explanation demands using heatmap visualization.
(c) heatmap visualization for the ‘what’ type explanations. (d) heatmap visualization for the ‘what+Why’ type explanations.
The total grid comprises 60 tiles in each direction, covering 0.0381° of latitude (2’ 17”) and 0.0451° of longitude (2’ 42”). The
plotted GPS value has been normalized by subtracting 35 degrees from latitude and 127 degrees from longitude.

Vision-language models employed in explanation generation often utilize different algorithms to cater to
diverse explanation needs. For instance, a significant number of ‘what’ explanations can be efficiently addressed
through visual question-answering tasks [6], whereas some require direct reasoning using language models that
guide these models in interpretable end-to-end driving [150].

Action justifications, on the other hand, are often conveyed through interpretable textual explanations [67, 149],
but they can also be effectively generated by vision-languagemodels [57]. The choice of the explanation generation
method, and consequently the data type, should be informed by the specific demand for explanation types. Our
data can be used to align the algorithm’s intended scope of explanation with the specific explanation needs
identified.
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5 Baseline Machine-learning Analysis: Proprioceptive and Interoceptive Modeling of Explanation
Timing

We conducted baseline machine learning analyses to validate our dataset’s utility in predicting the timing of
passengers’ explanation demands. These models were designed to classify passengers’ demand for explanations
within automated vehicles using data related to vehicle dynamics and passengers’ physiological responses. Our
ablation study was structured into three key areas:

• Abation 1: Model Performance and Feature Contribution. We performed time-series classification to
determine the timing for explanations to provide the baseline accuracy and demonstrate the potential of
the dataset. We investigated the contribution and importance of different features in determining demand
timing for explanations.

• Ablation 2: Multimodal Fusion Methods.We assessed the impact of the method for combining multi-
modal data on the accuracy of our models to guide the preferred input structure.

• Ablation 3: Temporal Window Sizes. We investigated how the input and annotation windows for
explanation demand timing affect the model’s accuracy.

5.1 Ablation 1: Model Performance and Feature Contribution.
5.1.1 Dataset Preparation. Given the role of abrupt motion in interruptibility [148] in cars and attitude towards
explanations in cars [145], we used the IMU sensor data as a basis input feature channel and conducted ablation
study by adding multimodal contexts, such as OBD-II and physiological responses to see how the added contexts
may or may not contribute to the enhanced prediction of passenger’s demand for explanations.

Specifically, we used 9-axis acceleration data from IMU, speed, throttle, brake usage, and steering angles from
OBD-II. Additionally, inter-beat interval and galvanic skin response data, including phasic and tonic features
(skin conductance level and response), were used. The data were preprocessed to clean and normalize by applying
filtering conditions to ensure the data falls within ranges for each. Data sequences were labeled to reflect
participants’ explanation demands within a -5s to +5s window, following the methodology of Semmens et al.
[130]. This labeling approach accommodated the reaction times of the participants and experimenters in our
study.

5.1.2 Training and Evaluation Method. For our analysis, we employed K-fold cross-validation with 𝐾 = 5 to
guarantee training variance and mitigate neighborhood bias. In doing so, data from a particular instance of
explanation demand were exclusively assigned to either the training or validation stage to keep the model’s
generalizability across various explanation instances. Given the predominance of non-explanation scenarios in
the dataset, class weights were adjusted during training to rectify the imbalance in the ‘explanation needed’ class.
The models were created and compiled with the Adam optimizer, focal loss function, and accuracy as the

evaluationmetric.We trained themodels using amini-batch approachwithmodel checkpointing and implemented
learning rate decay to aid convergence. Early stopping and regularization were also applied to prevent overfitting.
However, the frequent activation of early stopping in earlier epochs indicated regularization challenges in our
dataset, suggesting some degree of overfitting to the training data despite these preventive measures.
Acknowledging the presence of ‘normal’ situations without explanation demands, our focus remains on the

precise prediction of ‘anormal’ situations with explanation demands. Consequently, we report balanced accuracy
metrics, calibrated to maintain a balance between ‘explanation needed’ and ‘not needed’ labels, with a baseline
accuracy established at 50%.

5.1.3 Model Selection. We compared six models that have shown performance in sequential data prediction
tasks, each of which uses Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and these combined
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with Attention or Convolutional Neural Network (CNN) layers, all combined with a dense layer: LSTM-Dense, Bi-
LSTM-Dense, LSTM-Attention-Dense, Bi-LSTM-Attention-Dense, LSTM-CNN-Dense, and Bi-LSTM-CNN-Dense.

The precise number of layers, as well as the number of nodes in each layer, were tuned based on the balanced
accuracy achieved when utilizing all available features. Detailed information about the architectures of the
employed models can be found in Appendix C. The selection of layers in each model architecture was based on
the following considerations.

• LSTM: LSTM is a specific form of recurrent neural network (RNN) for sequential data that decreases the
vanishing gradient problem of RNN by employing gates that regulate the flow of information [47]. We
considered LSTM as base model given its performance in time-series classification [133]. We used the
configurations that Chen et al. [17] employed in classifying opportune moments to interrupt in VR using
gaze and interaction data as a baseline and modified them to fit our specific problem.

• Bi-LSTM: Bi-LSTM can process data in both forward and backward directions, which allows capturing
context from both sides of a sequence point where the meaning of a sensor data can depend on the preceding
data and the following response. We considered the use of Bi-LSTM due to its potential in decreasing
error in time-series classification [133]. As Bi-LSTM has been shown to diminish overfitting compared to
simple LSTM in tasks estimating driver behavior [100], we used Bi-LSTM model to tackle the regularization
challenge of the task and dataset this paper tackles.

• LSTM-Attention: The attention mechanism, introduced by Vaswani et al. [141], allows the model to
consider the weighted impact of each step of the input sequence on the output when combined with
LSTM [101]. We considered the use of the Attention layer with LSTM due to the reported increase in
performance in driver behavior estimation from CAN-bus [100, 101] and driver emotion recognition [102].
We positioned the attention layer between LSTM and Dense layers to refine the features processed by the
LSTM by selectively focusing on salient elements of the sequential input.

• LSTM-CNN: The combined use of LSTM and CNN model helps capture both temporal dependencies
and local spatial features within the time-series data [58]. This characteristic of temporal and spatial
feature extraction has led to its performance in recognizing driver behavior from a vehicle’s proprioception
measures [55] and VR interruptibility [17]. We positioned the CNN layer between LSTM and Dense layers
to extract features across different segments of the input data from different channels such as IMU, OBD-II,
and physiological responses.

5.1.4 Loss Function. We incorporated the focal loss to ensure that training wasn’t dominated by the most frequent
labels. The focal loss adjusts the contribution of each example to the overall loss during training (Equation 1),
where:

• 𝛼𝑡 is a weighting factor that balances the importance of positive and negative examples.
• 𝑝𝑡 is the estimated probability for the ground truth class.
• 𝛾 is the focusing parameter that controls the degree of down-weighting for easy examples.
• log(𝑝𝑡 ) is the standard cross-entropy loss.

Focal Loss = −𝛼𝑡 (1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 ) (1)

We tuned the hyperparameters 𝛼𝑡 from 0 to 1 and 𝛾 from 2 to 5 and set them as 𝛼𝑡 = 0.95 and 𝛾 = 2.

5.1.5 Baseline Machine Learning Result. As reported in Table 2, the Bi-LSTM-CNN network demonstrated the
highest balanced accuracy at 86.41%, closely followed by the LSTM-CNN model with an accuracy of 85.94% when
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Table 2. Performance metrics of models on predicting moments for explanation demands

IMU Only

Model Accuracy Bal. Acc. Precision Recall F1-score

Majority Baseline 95.24 5.00 - - -
Random Guess 90.90 49.60 3.95 3.99 3.97
LSTM 96.50 67.22 79.72 34.91 47.89
Bi-LSTM 96.36 65.82 79.23 32.06 45.46
LSTM-Attention 96.68 66.95 89.45 34.12 49.28
Bi-LSTM-Attention 96.85 68.43 92.43 37.02 52.82
LSTM-CNN 96.74 77.10 72.98 55.43 62.07
Bi-LSTM-CNN 97.32 75.63 85.18 51.70 64.24

IMU + OBD
Model Accuracy Bal. Acc. Precision Recall F1-score

Majority Baseline 95.33 50.00 - - -
Random Guess 90.91 49.77 4.33 4.28 4.31
LSTM 97.43 80.91 78.66 62.66 69.70
Bi-LSTM 97.33 79.11 80.12 58.97 67.76
LSTM-Attention 97.25 76.43 82.22 53.44 64.52
Bi-LSTM-Attention 97.49 77.65 85.98 55.75 67.49
LSTM-CNN 97.49 85.38 73.89 72.01 72.91
Bi-LSTM-CNN 97.63 84.33 77.85 69.64 73.45

IMU + OBD + Physiological Response

Model Accuracy Bal. Acc. Precision Recall F1-score

Majority Baseline 95.36 50.00 - - -
Random Guess 91.06 49.95 4.60 4.56 4.58
LSTM 97.52 85.43 74.46 72.08 73.23
Bi-LSTM 97.63 84.24 78.17 69.46 73.35
LSTM-Attention 97.59 82.26 80.21 65.34 71.95
Bi-LSTM-Attention 97.32 83.69 73.37 68.63 70.76
LSTM-CNN 97.72 85.94 77.58 72.92 75.14
Bi-LSTM-CNN 97.69 86.41 76.46 73.95 75.16

all features were used. The result implies that the combined use of LSTM and CNN allowed for the extraction of
temporal and spatial features that relate one sensor or data channel to another.
The Bi-LSTM-CNN network achieved its highest accuracy when used with IMU, OBD-II, and physiological

responses, allowing for the extraction of inter-relational features among them. Similarly, in our ablation study
comparing this and other models, the addition of driving- and physiological response-related features revealed an
increasing trend in accuracy. These results suggest that our multimodal approach can capture nuanced contexts
of explanation demands than using only proprioceptive sensing measures.
Although using all features resulted in the highest balanced accuracy, the combined use of IMU and OBD

also provided a reasonable level of accuracy with our baseline model, achieving balanced accuracies of 84.33%,
respectively (baseline: 50%). These findings imply that, while the incorporation of E4 wristband data could lead
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to increased accuracy, our method can be integrated with existing vehicle settings without requiring passengers
to wear obtrusive sensors to be subject to timing-opportunistic explanations.
The validation results demonstrate the reliability of driving and physiological features as indicators of ex-

planation demands, as substantiated by the balanced accuracy (compared to the baseline balanced accuracy of
50%) and F1-score. However, the F1-score is lower than the accuracy, indicating that training on the imbalanced
dataset was not entirely successful. While precision and recall are similar in all feature cases, recall is smaller
than precision when only IMU or IMU and OBD-II are used. A lower recall than precision suggests that the model
is more conservative in predicting the ‘explanation needed’ class, resulting in a higher number of false negatives
compared to false positives.

This disparity suggests less balanced training results, a consequence of the task’s nature and its reflection on
the dataset composition, where most driving situations do not require explanations and are not UX-vulnerable
scenarios. Models specifically designed for imbalanced scenarios, such as anomaly detection models, could
address the data imbalance issue. Alternatively, employing a more regularized protocol for annotating explanation
demands could be beneficial, although this might compromise ecological validity.

5.1.6 Feature Importance in Explanation Demand Prediction. To verify the importance of each feature from
multimodal sensor channels in determining the moment for explanation demands, we conducted a permutation
test using the Bi-LSTM-CNN model that incorporated all feature channels (IMU+OBD+Physiological responses).
The permutation importance was calculated by iterating over each feature, randomly permuting its values, and
measuring the decrease in the model’s performance (F1-score) on the permuted data compared to the original,
unperturbed data. This difference represents the importance of the permuted feature, as features that cause
a larger performance drop when permuted are considered more important for the model’s predictions. The
permutation importance for all features was obtained by repeating this process for each feature. The results are
illustrated in Figure 15.

Fig. 15. Feature importance measured from permutation study using Bi-LSTM-CNN model with all features.
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The result from feature importance analysis indicated that physiological responses from the E4 wristband,
specifically phasic GSR and inter-beat interval (ibi), are the most indicative features in determining the demanding
timing of in-vehicle explanations. This finding partly echoes the results from a machine-learning ablation result
(Table 2), which showed an increase in demand prediction accuracy with the adoption of physiological data.
Following these, speed, acceleration, steering, and throttle from OBD-II were identified to have a high influence
on the model predictions, aligning with the ablation test’s findings that incorporating these data enhanced the
accuracy beyond an IMU-only model.

Despite the known effect of abrupt motion on in-vehicle interruptibility [148], the IMU, a direct motion sensor,
was less indicative of the passenger’s demands for explanations regarding the driving actions. Conversely, OBD-II
features were generally more indicative. This is likely because passenger demands for explanations often related
to the vehicle’s operational maneuvers. OBD-II data, providing direct measurement into specific actions that
vehicles take, such as deliberate acceleration and deceleration at crucial moments (e.g., stopping at a traffic light
or speeding up to pass before it turns red), had a more importance in determining the timing for explanations.

5.2 Ablation 2: Multimodal Fusion Strategies
Our feature ablation study highlighted the importance of a multimodal approach in improving the accuracy of
predicting the moment for a passenger’s explanation demand. This is because multimodal fusion can contribute
to a fused representation and increased certainty in data, leading to improved accuracy and reduced error [41].
To understand how different fusion strategies could affect the accuracy of multimodal prediction, we compared
early and late fusion approaches.

• Early Fusion: In the early fusion approach, we used the all-feature models described in subsection 5.1.
The model takes the IMU, OBD-II, and physiological response data as input to a single LSTM layer, which
undergoes further processing by the subsequent layers to produce the final decision. In this method,
the LSTM layer is expected to learn the temporal patterns and interactions across all sensor modalities
simultaneously [41].

• Late Fusion: For the late fusion approach, we used models identical to the all-feature models in subsec-
tion 5.1, except for the input and input LSTM structure. By having separate Bidirectional LSTM layers for
each sensor channel, the model is designed to capture the unique characteristics and dynamics of each
modality independently. This method treats each sensor modality as a distinct input stream, allowing the
model to learn modality-specific temporal patterns and features [41].

We compared the accuracy of different models with respect to the fusion strategy employed (Table 3). The
balanced accuracy and F1-scores were higher for the early fusion approaches, while the model architecture
other than the input structure remained the same. Additionally, while the Bi-LSTM-CNN model showed the
highest accuracy with the early fusion method, the accuracy of the Bi-LSTM model was higher than that of the
Bi-LSTM-CNN model with late fusion. This result is attributable to the fact that the convolutional layers, which
capture statistical correlations between different modalities [40], could extract less inter-feature information
when these inputs were fed with separate LSTM streams.

Our ablation study on multimodal fusion showed that the early fusion strategy performed better than the
late fusion approach for this problem. This indicates that the correlation between different modalities, such
as the vehicle’s actions and the passenger’s physiological response, could be more important in analyzing the
passenger’s demand for explanations in automated vehicles.

5.3 Ablation 3: Temporal Window Sizes
We conducted an ablation study to investigate the effects of the annotation window size and input window size
on the model’s performance. The input window size was explored since our models require a certain number of
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Table 3. Performance Comparison of Early- and Late-Fusion Strategies

Early Fusion Late Fusion

Model Accuracy Bal. Acc. Precision Recall F1-score Accuracy Bal. Acc. Precision Recall F1-score

Majority Baseline 95.36 50.00 - - - 95.26 50.00 - - -
Random Guess 91.06 49.95 4.60 4.56 4.58 90.94 50.06 4.86 4.90 4.88
LSTM 97.52 85.43 74.46 72.08 73.23 96.52 75.13 67.56 51.51 58.16
Bi-LSTM 97.63 84.24 78.17 69.46 73.35 97.45 83.74 75.36 68.61 71.70
LSTM-Attention 97.59 82.26 80.21 65.34 71.95 96.27 73.42 63.65 48.20 54.83
Bi-LSTM-Attention 97.32 83.69 73.37 68.63 70.76 96.93 78.82 71.28 58.83 64.36
LSTM-CNN 97.72 85.94 77.58 72.92 75.14 96.66 82.62 64.17 67.12 65.50
Bi-LSTM-CNN 97.69 86.41 76.46 73.95 75.16 97.43 83.18 75.45 67.45 71.09

time steps in the input sequence for making predictions. Specifically, we compared input window sizes of 3, 5,
7, and 10 seconds. The annotation window size was also considered because the annotation process naturally
involves some level of delay. The default annotation window was set to -5 to +5 seconds around the recorded
UNIX timestamp. However, we varied the annotation window size to 3, 5, 7, and 10 seconds in both directions to
account for potential variations in the delay. The rationale behind exploring different annotation window sizes
was to capture the temporal range within which a passenger might perceive the need for an explanation, as this
delay can depend on individual participants and specific situations.
We compared the performance of the Bi-LSTM-CNN model with varying levels of annotation and input

windows. While all other data preparation conformed to the previous ablation studies, the explanation data was
annotated according to the annotation window size, which resulted in differences in data distribution. Although
the majority baseline for an annotation window of 3 seconds was 97.98%, the majority baseline for an annotation
window of 10 seconds was 94.68%. However, we compare balanced accuracy (baseline: 50%) and F1-score, which
are not affected by the change in distribution. The results indicate that the balanced accuracy and F1-score
generally increase within the range we searched as we accommodate larger input and annotation windows
(Figure 16).

5.3.1 Larger Annotation Window Yields Higher Accuracy. Within the investigated range of annotation windows,
a larger window yielded better prediction results, with the 10-s annotation window showing the highest accuracy
of 86.75% when used with a 10-second input window. This result is attributable to that a larger annotation window
increases the likelihood of capturing delayed reactions. Conversely, a smaller annotation window may exclude the
delayed response due to individual differences, participants’ potential hesitancy that induced delay, and complex
cases of each reporting. While the benefits of a larger annotation window used in our experiment seemed to
have worked more dominantly, a smaller annotation window can tightly focus on the most relevant temporal
proximity to the event, whereas a larger annotation window may introduce noise by including irrelevant data
points that dilute the model’s ability. As our ablation study indicated the impact of annotation window size
on model performance, the trade-off between the size of the annotation window should be considered when
designing models to predict opportune moments to provide explanations, though the explored range preferred a
larger annotation window.

5.3.2 Larger Input Window Yields Higher Accuracy. Within the investigated range of input windows, a larger
window yielded better prediction results, with the 10-second input window showing the highest accuracy of
86.75% in the 10-second annotation window case. This is mainly because a larger input window provides a
broader context and sequences, which could involve some level of demand being developed in the long term. By
considering a wider time frame, the model can learn from a richer set of data points and identify patterns that
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may not be apparent within a smaller window. This increased contextual awareness can lead to more accurate
predictions of explanation demand timing. While the benefits of a larger input window used in our experiment
worked more dominantly, a smaller input window can provide quicker predictions suitable for real-time prediction,
whereas a larger input window could lead to slower response times due to increased model complexity. As our
ablation study indicated the impact of input window size on model performance, the trade-off between the size
of the input window should be considered when designing models to predict opportune moments to provide
explanations, although the explored range preferred a larger input window.

Fig. 16. Balanced accuracies and F1-scores for Bi-LSTM-CNN models with different annotations and input windows.

6 Discussion

6.1 Potential Applications of the TimelyTale Dataset
While our ablation study focused on predicting the demand timing for explanations, the multimodal composition
of our dataset opens possibilities for extended analysis. The open nature of our dataset could enable further
applications at both the passenger application level and city level when facilitated for wider data collection.

6.1.1 City-wide Modeling of Explanation Demands. Our research primarily focused on constructing multimodal
datasets that include environmental, driving, and passenger-related contextual data. We conducted experiments
under controlled route settings to gather this data. Given the widespread adoption of vehicle proprioception
[61, 85, 148], smartphones [56, 61], and wrist-worn devices [56, 148], our approach could benefit from drawing
on the methodologies and insights from previous research in the field of interruptibility. For example, considering
the capability of OBD-II to transfer data via Bluetooth, our machine learning approach can be applied to use
only OBD-II data in conjunction with a smartphone application for GPS and IMU data collection and explanation
demand annotation for data collection at scale. This approach will enable large-scale data collection, such
as crowdsourcing, to identify city-wide explanation needs or potentially other types of demands related to
urban planning, including traffic, road type, and regulation design. It would aid in pinpointing critical areas for
explanations and support the development of services to meet passengers’ informational needs when designing
services and facilities for which drivers and passengers may have specific types of demands.

6.1.2 In-vehicle Explanation Application: Combining Demand Timing Prediction with Explanation Generation.
While our study primarily focused on identifying moments for delivering in-vehicle explanations related to a
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vehicle’s decision-making or driving behavior, its inclusion of exteroception data can be used to extract object-
and environment-specific features surrounding the vehicle and relate them to the explanation demands in
automated vehicles. Given that a significant portion of the explanation requests in our dataset relates to the
vehicle’s decision-making process and its environmental context, these demands are likely to be addressed by the
downstream tasks of vision-language models, such as those involving GPT-4 for decision-making and reasoning
in automated driving [23, 118, 150, 152]. The prediction of explanation demand timing can be combined with
these explanation generation models to create a system for timely and contextually relevant explanations. This
integration can be achieved through a cascading approach, where the demand timing prediction model determines
the provision of explanations generated by visual-language models at the appropriate moments, or through an
end-to-end model that jointly learns to predict the timing and generate the explanations.

Large language models for generating vehicle and traffic scenario explanations have emerged with the dual aim
of describing traffic situations, navigation, and driving operations [166]. These models, especially those employing
visual question-answering frameworks, are increasingly oriented towards explaining traffic scenarios to share
an understanding of current traffic conditions between vehicles and passengers, often without accompanying
causal justifications for specific actions. For example, Atakishiyev et al. [6] demonstrated the effectiveness of
visual question-answering models in generating detailed explanations of traffic scenarios. Sima et al. [134] used
these models for language-driven perception and end-to-end automated driving tasks. The effectiveness of these
approaches in generating accurate explanations could be enhanced by integrating contextual passenger contexts
regarding their needs and states, to tailor in-vehicle explanation services that meet actual user demands.
The multimodal composition of our dataset, which includes LiDAR, GPS, OBD-II, front-view stereo images,

and real-time passenger explanation requests, offers exteroceptive and proprioceptive contextual information in
which explanations are sought. It thus holds the potential for creating driving-adaptive explanations. For example,
it can support GPS-specific contextual explanation demands, utilizing methodologies similar to those used in
graph-based models for driving-purpose prediction studies [83]. Similarly, the exteroception, proprioception, and
interoception data can be used in multimodal transformer models to generate explanations that are contextually
pertinent and attuned to the vehicle’s ego-motion behavior and proprioception-influenced decisions [23, 57],
beyond traffic situation explanations.

6.1.3 Proof-of-Concept: City-Wide Geolocational Modeling of Textual Explanation Demands. We analyzed the
textual explanations with regards to the positions where they were required to provide a proof-of-concept for two
proposed applications: city-wide modeling and textual explanation. First, we clustered the GPS positions into ten
groups using k-means clustering (Silhouette score = 0.61). For each geographical cluster (GeoCluster), we applied
the TextRank algorithm [97] to identify the most important words and understand the explanation demands
modeled from the raw text of required explanations. This approach balances the previously introduced coded
labels with an objective method based on the original text label. The TextRank algorithm constructs a graph
representation of the text, where nodes represent words or phrases, and edges represent their co-occurrence or
semantic similarity. We plot TextRank importance scores for each word or phrase based on their connections to
other words to identify the most salient or representative information in the GeoClusters.

In Figure 17, most GeoClusters shared common explanation demands related to the vehicle’s starting, stopping,
and slowing down behaviors. However, unique demands emerged in certain areas. For instance, participants
frequently sought explanations for merging and entering highways. The transition between different road types,
such as urban roads to highways or vice versa, at GeoClusters 4, 5, and 10, was also a trigger for explanation
demands. Likewise, in GeoCluster 1 (Figure 17), corresponding to the departure and arrival points, there were
specific inquiries about lane-changing behaviors undertaken by the vehicle to reach its destination.
The application of the TextRank algorithm to our dataset serves as a proof-of-concept, demonstrating the

potential for scalability to larger datasets and more advanced natural language processing methods. TextRank’s
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graph-based approach captures the inherent structure and relationships within the text, making it adaptable
to various text lengths and complexities. As the dataset grows in size, the method can be extended to complex
language models. Furthermore, while each GeoCluster in our proof-of-concept covers large areas, which may
not be uniform in terms of explanation demands, larger datasets will allow for the grouping of more condensed
GeoClusters. This will enable an understanding of city-wide demand at specific locations, aiding traffic and urban
planning, policymaking, and the development of in-vehicle services for geography-aware explanations.

Fig. 17. TextRank analysis on the k-means clustering of each GPS-tagged explanation demand.
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6.2 Explanation Requires Explaining Situations and Decisions Rather Than Focusing Solely on
Reasons

Passenger reports in simulated driving environments emphasize the importance of receiving explanations for
unexpected driving behaviors [145]. This need is also reflected in research on visual explanations, which demon-
strates that passengers’ trust increases when an automated vehicle visualizes its perception of the surrounding
objects and environments [19, 21, 64]. Similarly, our results show that explanation demands in automated vehicles
primarily focus on operational driving decisions, such as turns, lane changes, accelerations, starts, and stops,
which are influenced by the surrounding objects and environments, rather than complex tactical driving strategies
or long-term navigational goals.
Interestingly, about half of the requests (50.77%) for explanations did not seek the underlying reasons for

driving behaviors; instead, passengers were interested in understanding operational decisions. The other half of
the explanation demands asked for reasons, but no demand asked for the reason, only without explaining the
vehicle’s actions. The demanded reasoning-related explanations were mostly related to traffic lights and traffic
conditions, explaining the vehicle’s reaction to the changing road environment. This result partially explains the
mixed findings from previous studies assessing the impact of providing action explanations and their reasoning
on passenger experience [163]. However, it should be noted that our result was conducted under normal driving
conditions without encountering safety-critical situations or engaging in prolonged driving that might require
insights into tactical driving decisions, destination planning, or route awareness.
Most XAI models focus on explaining the rationale behind a vehicle’s decision-making process [67]. While

these provide relevant information to the stakeholders who seek insights into a vehicle’s reasoning processes,
such as developers, AI experts, insurers, and policymakers, the impact of these models on in-vehicle passengers is
not as well-defined [115]. Building on the groundwork laid by in-vehicle explanation studies focused on describing
the vehicle’s actions and justifications that focused on safety-critical environments, our study contributes to
the in-vehicle interruptibility and explainability by exploring passengers’ informational needs and sources of
explanation demands within routine automated driving scenarios.

6.3 Proprioceptive and Physiological Responses as Reliable Indicators for Passenger Explanation
Demand Timing

Our machine learning analysis included IMU, OBD-II, and physiological responses as features capturing pas-
sengers’ demand for explanations. The results also showed that a vehicle’s proprioceptive sensors alone can
serve as indicators of moments requiring explanation, though it may be improved with passenger sensing data.
This suggests the possibility of our method being integrated with vehicles without additional hardware use or
obtrusive sensing. The ablation study demonstrated that adding relevant features can enhance the accuracy of
timing classification. For example, introducing additional sensors to monitor the passenger’s physiological state
increased the accuracy. Similarly, while not included in the current model, incorporating additional features such
as exteroceptive sensing data, as used in Liu et al. [85] and Wu et al. [148], could further improve accuracy.

However, it is important to consider the trade-offs between the validity of the settings in terms of the likelihood
of use and integration in actual scenarios, the obtrusiveness of the setup, and the richness of the data. As part of
our dataset initiative, we collected extensive data while maintaining minimal obtrusiveness to ensure a naturalistic
experience for study participants. Nevertheless, some sensors pose additional installation, and others require the
passenger to wear them, which could limit their usage. When designing models for real-world applications based
on our dataset, careful consideration should be given to their integration with the daily environment.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 109. Publication date: September 2024.



TimelyTale: A Multimodal Dataset Approach to Assessing Passengers’ Explanation Demands in Highly Automated Vehicles • 109:35

6.4 Validity of the WoZ Driving Experience
The WoZ methodology is used in automated vehicle research for its safety and regulatory advantages. However,
there are concerns about how authentic the passenger experience it provides is compared with that of real
automated vehicles. Schneider et al. [129], in their WoZ study conducted on actual roads, found that knowing
about the wizard driver did not significantly impact the perceived authenticity of the automated driving simulation.
Despite this finding, many researchers, such as Detjen et al. [29] and Andrea et al. [103], have emphasized the
importance of maintaining the illusion of an automated vehicle and have raised concerns about the potential
effect of discovering a wizard driver on passengers’ perceptions and behavior, suggesting that participants who
do not believe the simulation should be excluded to ensure the validity of the results.
In our study, the vehicle was fitted with sensors similar to those in automated vehicles, which enhanced the

impression of automated operation. No participant reported noticing the driver at the end of the experiment,
and thus none were excluded from the experiment report. This suggests that the WoZ implementation was
effective in maintaining the illusion of an automated vehicle. However, it is important to acknowledge that
passengers’ awareness of the experimenter’s presence might have given them a sense of safety, knowing that
the wizard might be ready to take over, though they were informed and believed the experimenter did not drive.
This awareness could influence their behavior and reactions compared to what they would experience in actual
automated vehicles.
Additionally, the partition used for the experiments may have limited passengers’ peripheral vision and

situation awareness. As we aimed to elicit passenger demand for explanations under automated driving scenarios,
we prioritized a realistic visual and kinesthetic driving environment. When testing specific services based on our
study, driving simulators can also be used to provide more natural interface experiences without the need for
partitions to hide the driver.

6.5 Data Limitations
6.5.1 Focused User Composition and Driving Scenarios. Our dataset could be further enriched by including a more
diverse range of user familiarity, driving scenarios, and a larger number of participants. Our study specifically
focused on users unfamiliar with automated vehicles, acknowledging the public anxiety and reluctance to accept
automated vehicles [51], which could be alleviated by transparency and explainability [64]. Although some users
had experience with SAE level 2 vehicles with advanced driver assistance systems (e.g., Tesla’s Autopilot [151]),
the subjects of our study had no prior experience with highly automated vehicles.
With the upcoming prevalence of automated vehicles, our approach could be expanded to include scenarios

involving experienced passengers. The demand for explanations may be lower when the driving automation is
perceived as flawless, as we typically don’t expect extensive explanations when riding in a vehicle driven by
a human driver. Nevertheless, given that explanations can alleviate passengers’ anxiety when vehicles behave
in unexpected ways [145], the value of explanations can also lie in the alignment and sharability of in-situ
decisions rather than building and calibrating trust in the automation as a whole. Further research is needed to
determine the persistence of these demands with experienced passengers. Additionally, while the dataset includes
comparable hours of driving data, it involved a relatively limited number of participants (𝑁 = 29), suggesting the
potential to better represent individual differences by including a larger number of participants with diverse age,
gender, and cultural backgrounds.
When automated vehicles become more pervasive, new interaction scenarios may arise, such as multiple

user situations or shared mobility [91]. For example, the impact of social dynamics on demand in public shared
mobility [14] and the specific information needs in shared vehicle scenarios [37] could be further explored. Also,
given that road types can impact passengers’ perceptions of automated vehicles [39], expanding the study to
include rural road environments would enhance the dataset’s representativeness and usability.
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6.5.2 Potential Overestimation of Explanation Demands. Weacknowledge that the number of explanation demands
reported in this study could be overestimated owing to the research methods employed. Although we did
not impose a specific number of explanations and explicitly informed participants that they could report no
explanations if they needed none during the drive, our experimental settings for assessing explanation demands
might have introduced certain biases. The Hawthorne effect [94], where people become more aware of and
attentive to the vehicle’s actions when they know they are being studied, could have been intensified by the
priming effect of describing explanations. This might have led participants to think more about the concept and
its importance [98], potentially increasing their perceived need for explanations. This effect could have been
further amplified by the examples of in-vehicle explanations for automated vehicles provided to aid participants’
understanding of the study. These examples may have led participants to believe they needed more explanations
than they otherwise would have, potentially limiting or biasing their perceptions of the types of explanations
available and resulting in oversampling of certain explanation types.
Moreover, demand characteristics [110] or social desirability [109] bias could have influenced participants

to align their behavior with the researcher’s expectations [26] or general beliefs. We attempted to minimize
this effect by emphasizing that expressing the absence of demand (by not reporting any demand) is just as
important as expressing demand. However, the study’s experimental nature might have led to an overestimation
of explanation demands. Furthermore, the framing effect [139] of presenting our study as an investigation
of in-vehicle explanation demands might have emphasized the importance of explanations and encouraged
participants to express a greater need for them. This framing could have inadvertently influenced participants’
responses and contributed to an overestimation of explanation demands.

While we took steps to mitigate these biases, such as providing clear instructions and avoiding leading questions,
it is important to consider these limitations when interpreting the results of this study. Future research could
employ alternative methods, such as long-term studies or crowdsourcing, to further investigate the demand for
explanations in real-world settings and validate the findings of this study.

6.5.3 Variability in Explanation Demand Report and Regularization Challenges. While our dataset aimed to stan-
dardize the collection of explanation demands through a fixed protocol and detailed instructions, the annotation
of individuals’ inner intentions inherently relied on self-reporting. This approach introduces variability in two
aspects: first, the demand for explanations varies among individuals, and second, the threshold at which one
reports a demand for an explanation differs from person to person. While this approach could serve as formative
research, from a machine learning perspective, it could complicate the solution by inducing generalization
challenges that result from differences in experience and reporting among individuals, and even within the same
participant across different explanation cases.

This challenge produces data that is difficult to regularize and prone to overfitting due to its characteristics. In
such cases, the individual and session-specific differences among explanation cases make it hard to generalize,
causing trained models to work less effectively on datasets not used for training. Therefore, our dataset approach
should be complemented with more standardizable methods for scalable data collection at large.

The data collection method could be adapted to include digital experience sampling methods [7], or a crowd-
sourcing approach with driving videos, simplifying the process for participants to express their explanation
demands. However, these methods may induce actions not typically present in actual automated vehicles, reducing
ecological validity. Alternatively, monitoring self-interruptions [43] may be another viable approach, depending
on the objectives of the explanation system (e.g., minimizing the disruption of NDRTs).

Implementing such modifications would standardize the annotation of explanation demands, yielding data more
suitable for machine learning predictions while better reflecting the varied needs and behaviors of passengers
in automated vehicles. These approaches will provide a good dataset for baseline models, while experiments
involving passengers could serve to fine-tune individual models.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 109. Publication date: September 2024.



TimelyTale: A Multimodal Dataset Approach to Assessing Passengers’ Explanation Demands in Highly Automated Vehicles • 109:37

7 Conclusion
In this study, we collected data on passengers’ demand for explanations in automated driving environments
while gathering environmental driving-related and passenger response (interoceptive) measurements, which
can be used for contextual understanding. We used 3D LiDAR, stereo cameras, GPS, OBD-II, and IMUs for
exteroceptive and proprioceptive data. Interoceptive data pertaining to the passenger’s state were captured
using a depth camera, LiDAR camera, E4 wristband, thermal imaging, and seat pressure sensors. The results
of our data identified both the timing and frequency of passengers’ demands for explanations, as well as the
specific in-situ explanations that passengers demand in driving situations. Our methodology, equipped with GPS,
can be applied to encompass city-wide analysis of the need for explanations. Despite some dataset imbalance
and regularization issues, our preliminary analysis indicated its potential utility in determining the passenger’s
demand timing for in-vehicle explanations. By integrating exteroceptive, proprioceptive, and interoceptive sensor
data and multimodal vision-language models, our dataset could be used for the end-to-end generation of textual
explanation content that is pertinent to environmental, driving-related, and passenger-specific contexts.
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Table 4. TimelyTale dataset composition: type, Product, formatting, and refresh rate of the data and features from each
sensor stream.
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A Explanation Coding

Type Code Description

Actions

The car changes lanes Passengers request an explanation for the vehicle’s lane-changing behavior. When the
passenger explicitly mentions the need for an explanation about lane changes or if the
request arises after the vehicle has changed lanes, and the experimenter confirms that the
inquiry pertains to the action of lane-changing with the passenger.

The car stops Passengers request an explanation for the vehicle’s stopping behavior. When the passenger
explicitly mentions the need for an explanation about the stop or if the request arises after
the vehicle has come to a stop, and the experimenter confirms that the inquiry pertains to
the action of stopping with the passenger.

The car turns left Passengers request an explanation for the vehicle’s left-turning behavior. When the pas-
senger explicitly mentions the need for an explanation about the left turn or if the request
arises after the vehicle has turned left, and the experimenter confirms that the inquiry
pertains to the action of left-turning with the passenger.

The car turns right Passengers request an explanation for the vehicle’s right-turning behavior. When the
passenger explicitly mentions the need for an explanation about the right turn or if the
request arises after the vehicle has turned right, and the experimenter confirms that the
inquiry pertains to the action of right-turning with the passenger.

The car speeds up Passengers request an explanation for the vehicle’s acceleration. When the passenger
explicitly mentions the need for an explanation about speeding up or if the request arises
after the vehicle has accelerated, and the experimenter confirms that the inquiry pertains
to the action of speeding up with the passenger. When the vehicle starts, both speeding up
and starting codes may be applied.

The car slows down Passengers request an explanation for the vehicle’s deceleration. When the passenger
explicitly mentions the need for an explanation about slowing down or if the request arises
after the vehicle has decelerated, and the experimenter confirms that the inquiry pertains
to the action of slowing down with the passenger. When the vehicle stops, both slowing
down and stopping codes may be applied.

The car starts Passengers request an explanation for the vehicle’s sudden start from a full stop. When the
passenger explicitly mentions the need for an explanation about starting or if the request
arises after the vehicle has started moving, and the experimenter confirms that the inquiry
pertains to the action of starting with the passenger.

The car enters a merging
area

Passengers request an explanation for the vehicle entering a merging area. When the
passenger explicitly mentions the need for an explanation about entering the merging area
or if the request arises after the vehicle has entered the merging area, and the experimenter
confirms that the inquiry pertains to the action of entering a merging area with the
passenger.

The car exits the high-
way

Passengers request an explanation for the vehicle exiting the highway. When the passenger
explicitly mentions the need for an explanation about exiting the highway or if the request
arises after the vehicle has exited the highway, and the experimenter confirms that the
inquiry pertains to the action of exiting the highway with the passenger.

The car merges onto the
road

Passengers request an explanation for the vehicle merging onto a larger road. When the
passenger explicitly mentions the need for an explanation about merging or if the request
arises after the vehicle has merged onto the road, and the experimenter confirms that the
inquiry pertains to the action of merging onto the road with the passenger.

Table 5. Coded explanations for the vehicle’s actions
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Type Code Description

Justifications

because the traffic light
is red

Mostly related to the vehicle stopping or slowing down due to a red traffic light. This
justification is used when passengers explicitly mention the red traffic light as the reason
or through follow-up questions that clarify the reason for the vehicle’s stop or deceleration.

to pass the traffic light Solely related to the vehicle speeding up to pass a traffic light before it turns red. This
justification is used when passengers explicitly mention the need to pass the traffic light
before it turns red as the reason or through follow-up questions that clarify the reason for
the vehicle’s acceleration.

due to traffic Mostly related to the vehicle stopping or slowing down due to general traffic conditions.
This justification distinguishes between general traffic congestion and the need to maintain
distance from the front car. It is used when passengers explicitly mention traffic as the
reason or through follow-up questions that clarify the reason for the vehicle’s stop or
deceleration.

to reach a destination Solely related to the vehicle changing lanes to reach a specific destination. This justification
is used when passengers explicitly mention the destination as the reason or through follow-
up questions that clarify the reason for the vehicle’s lane change.

because the traffic light
turned green

Solely related to the vehicle starting or moving due to the traffic light turning green. This
justification is used when passengers explicitly mention the green traffic light as the reason
or through follow-up questions that clarify the reason for the vehicle’s start.

to maintain distance
from the front car

Mostly related to the vehicle slowing down to maintain a safe distance from the car in
front. This justification distinguishes between the need to maintain distance from the front
car and general traffic conditions. It is used when passengers explicitly mention this reason
or through follow-up questions that clarify the reason for the vehicle’s deceleration.

as it enters a school zone Solely related to the vehicle slowing down upon entering a school zone. This justification
is used when passengers explicitly mention the school zone as the reason or through
follow-up questions that clarify the reason for the vehicle’s deceleration.

to exit a road Solely related to the vehicle changing lanes to exit a road. This justification is used when
passengers explicitly mention the exit as the reason or through follow-up questions that
clarify the reason for the vehicle’s lane change.

as a new road merges Solely related to the vehicle changing lanes as a new road merges. This justification is used
when passengers explicitly mention the merging road as the reason or through follow-up
questions that clarify the reason for the vehicle’s lane change.

Table 6. Coded explanations for the vehicle’s action justifications

B Dataset Composition
In this section, we detail the composition and formatting of each data channel. See Figure 18 for the structure and
exemplary view of the data repository. The complete list of available data is provided in Table 4. For illustration
purposes, we include exemplary data from Subject 23 in the appendix.

B.1 Metadata
Our metadata includes details such as the subject’s gender, age, driving experience, and the start and stop times
of the experiment. Although the data is in CSV format, we offer it as a 7z compressed file to avoid Harvard
Dataverse’s automatic conversion to tabular form. Figure 19 shows the header of the metadata.csv file.

B.2 Exterocpetion
B.2.1 ZED Stereo Camera. Driving front view images was recorded with a stereo camera on the top of the car.
These ZED images are uploaded in a split-compressed 7z format to comply with repository requirements (<2.5GB
per file), under the (SubjectID\Exteroception) folder. After downloading and decompressing the files, one can
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Fig. 18. TimelyTale Dataset Structure: A view available in the Harvard Dataverse public repository.

Fig. 19. Example data and formatting of the metadata.csv file.

find a folder named zed_whole_images_subjectID. Each file contains a ZED stereo image with a resolution of
1344×376. The filenames follow the format UNIXTIME_zed (See Figure 21 for an example).
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Fig. 20. Exemplary ZED image captured for participant 23 (1695616259554_zed.png under the directory
zed_whole_images_subject23).

B.2.2 3D LiDAR point cloud. Point cloud data from the VLP-16 is also provided. Similar to the ZED images,
these are uploaded in a split-compressed 7z format under the (SubjectID\Exteroception) folder in the TimelyTale
dataset repository. Uncompressing the files yields a MAT file titled lidar_subject%d (where %d represents the
subjectID). The structure of LiDAR point cloud data is detailed as follows:

• Location: This variable represents the spatial coordinates of each point in the point cloud, formatted as
a 16×1808×3 array of doubles. Each element in this array corresponds to a point in 3D space, with the
dimensions representing:
– 16 rows, each corresponding to one of the VLP-16 LiDAR’s 16 laser channels.
– 1808 columns, representing the number of points sampled by each laser channel in one full rotation of
the LiDAR sensor.

– 3 layers in the third dimension, specifying the x, y, and z coordinates of each point relative to the LiDAR
sensor’s position.

• XLimits: This variable specifies the minimum and maximum x-coordinates observed in the entire point
cloud dataset, formatted as a 2-element array [−112.312793074318, 105.032973380692]. These values define
the horizontal span of the scanned area in the x-direction.

• YLimits: Similar to ‘XLimits’, this variable indicates the minimum and maximum y-coordinates within the
point cloud, given as a 2-element array [−93.2348408735782, 82.2257520253454]. It outlines the extent of
the scanned area in the y-direction, perpendicular to the x-axis.

• ZLimits: This variable provides the vertical range of the scanned area by specifying the minimum and
maximum z-coordinates, noted as [−4.57091774634623, 23.7673529117645] in a 2-element array. These
limits indicate the lowest and highest points captured by the LiDAR in relation to its mounting position.

• Intensity: This array, sized 16×1808, records the intensity of the returned laser signal for each point.
Intensity values are indicative of the reflective properties of the surfaces that the LiDAR beams have
encountered. These values can be used to differentiate between types of materials and surfaces in the
environment based on how much light they reflect back to the sensor.

B.3 Proprioception
B.3.1 GPS. The GPS file is formatted as normalizedGPS_subject%d.csv. The data is tagged with timestamps and
is normalized by subtracting 35 degrees from latitude and 127 degrees from longitude. Each column of the data
contains the following information.
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Fig. 21. Exemplary LiDAR point cloud captured for participants 23 at 1695615171.410340 UNIX time.

• Latitude: Geographical latitude of the GNSS module’s current position, originally recorded in degrees with
the Equator as 0◦. The latitude has been normalized by subtracting 35 degrees from the original value.

• Longitude: Geographical longitude of the GNSS module’s current position, originally recorded in degrees
with the Prime Meridian as 0◦. The latitude has been normalized by subtracting 127 degrees from the
original value.

• HeightMSL: Height above mean sea level, indicating the altitude of the GNSS module relative to average
sea level, measured in meters.

• VeIN: Velocity towards the north, indicating the speed and direction of the GNSSmodule moving northward,
measured in meters per second.

• VeIE: Velocity towards the east, indicating the speed and direction of the GNSS module moving eastward,
measured in meters per second.

• VeID: Velocity downwards, indicating the speed and direction of the GNSS module moving towards the
Earth’s center, measured in meters per second.

• Heading: The direction of the GNSS module’s movement, measured in degrees from true north.

B.3.2 IMU. The IMU sensor data are encapsulated in files named according to the convention: im_subject%d.csv,
which is uploaded in a 7z compressed format to prevent automatic conversion in the database. Each file pertains
to a specific subject and contains time-stamped readings from the IMU sensor, which captures both linear
acceleration and angular velocity, along with orientation angles. The data encompass the following measurements
along the x, y, and z axes:

• Acc_x: Acceleration along the x-axis, measuring the rate of change of velocity in the direction perpendicular
to the y-z plane. It is recorded in meters per second squared (𝑚/𝑠2).

• Acc_y: Acceleration along the y-axis, measuring the rate of change of velocity in the direction perpendicular
to the x-z plane. It is also recorded in meters per second squared (𝑚/𝑠2).
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Fig. 22. Example data and formatting of the normalizedGPS_subject05.csv file.

• Acc_z: Acceleration along the z-axis, measuring the rate of change of velocity in the direction perpendicular
to the x-y plane. This dimension typically represents the vertical acceleration and is recorded in meters per
second squared (𝑚/𝑠2).

• W_x: Angular velocity around the x-axis, indicating the rate of rotation around the axis perpendicular to
the y-z plane. It is measured in radians per second (𝑟𝑎𝑑/𝑠).

• W_y: Angular velocity around the y-axis, indicating the rate of rotation around the axis perpendicular to
the x-z plane. It is measured in radians per second (𝑟𝑎𝑑/𝑠).

• W_z: Angular velocity around the z-axis, indicating the rate of rotation around the axis perpendicular to
the x-y plane. It is measured in radians per second (𝑟𝑎𝑑/𝑠).

• Angle_x: Orientation angle around the x-axis, representing the tilt or rotation angle relative to the
horizontal plane, measured in degrees (◦).

• Angle_y: Orientation angle around the y-axis, representing the tilt or rotation angle relative to the
horizontal plane, measured in degrees (◦).

• Angle_z: Orientation angle around the z-axis, also known as the yaw angle, representing the sensor’s
rotation about the vertical axis, measured in degrees (◦).

Fig. 23. Example data and formatting of the imu_subject05.csv file.

B.3.3 OBD-II. The OBD-II sensor data are in files named according to the convention: obd_subject%d.csv. Each
file pertains to a specific vehicle and contains time-stamped readings from the OBD-2 system, which captures
various parameters related to the vehicle’s performance and state. The data include the following measurements:

• Speed: The vehicle’s speed, measured in kilometers per hour (km/h). This value represents the instantaneous
speed of the vehicle at the time of data collection.

• Throttle: The throttle position, indicating the degree to which the throttle valve is open and allowing air
into the engine, measured as a percentage of the maximum throttle position. The range of this value is
from 0 to 100%, where 0% means the throttle is completely closed and 100% means it is fully open.
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• Brake: The brake status, indicating whether the brake is applied or not. A value of 89 denotes the brake is
engaged (on), and a value of 90 indicates the brake is not pressed (unpressed). Values other than 89 or 90
are considered errors, mostly due to simultaneous readout/write-in I/O structure conflicts.

• Steering: The steering wheel’s angle, measured in degrees. The valid range for this measurement is from
-720 degrees to +720 degrees, representing the full range of left to right steering capability. Values outside
this range are considered errors, attributed to the same simultaneous readout/write-in I/O structure issues
as with the brake data.

Fig. 24. Example data and formatting of the obd_subject05.csv file.

B.4 Interoception
B.4.1 E4 Wristband. Data from the E4 wristband were recorded for each channel and are uploaded in a single 7z
zip file to prevent automatic conversion to tabular format. Upon unzipping the file, separate data streams from
the E4 wristband are available, each tagged with UNIX timestamps in individual files:

• E4_acc_subject%d.csv: 3-axis acceleration (x, y, z)
• E4_bvp_subject%d.csv: Raw data of blood volume pulse received from the E4 streaming server.
• E4_gsr_subject%d.csv: We provide both the raw data and phasic and tonic features extracted by the
software Ledalab [11, 12] to assist in the analysis of moment-specific and long-term changes in the GSR
signal.
– raw_data: Raw GSR signal received from the E4 streaming server.
– tonic_data: Skin conductance level (SCL), consists of general, relatively long-term arousal.
– phasic_data: Skin conductance response (SCR), consists of transient changes with spikes or peaks.

• E4_ibi_subject%d.csv: inter-beat interval feature calculated from the BVP signal
• E4_tmp_subject%d.csv: body temperature in ◦𝐶

Given the potential for motion artifacts in a moving vehicle, we computed the Signal-to-Noise Ratio (SNR)
to validate the quality of the physiological signals recorded by the E4 wristband (see Table 7). We employed a
second-order polynomial fit to the autocorrelation function data, following the method outlined by Saganowski
et al. [126]. The mean SNR ranged from 22.37 dB to 45.95 dB, indicating the signal’s high quality.

B.4.2 Tactile Seat. The data from the Intelligent Carpet Tactile Seat is provided in two separate files for lower
and upper seat:

• Back-side pressure: TactileSeat_upper_subject%d.csv
• Seat-side pressure: TactileSeat_lower_subject%d.csv

The row data is each data frame while each column are assigned for 32×32 sensor array, using name protocol %d-
%d, ranging from 0-0 to 32-32. The data is also provided together with E4 as HDF5 file format for comprehensive
analysis (Figure 26), the format of which was adopted from the ActionSense framework [27].
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Fig. 25. (a) E4_acc_subject05, (b) E4_gsr_subject05, (c) E4_tmp_subject05, (d) E4_ibi_subject05, (e) E4_bvp_subject05.

Channel mean std min q15 q25 q50 q75 q95 max
bvp 33.61 1.874 29.59 31.76 32.43 33.46 34.92 36.43 37.74
ibi 22.38 3.076 13.37 20.19 21.16 22.99 24.62 25.68 27.88
tmp 41.10 0.7778 39.92 40.53 40.68 41.03 41.32 42.16 44.14
raw_data 34.49 5.58 19.45 29.62 31.40 36.33 37.73 40.06 44.45
tonic_data 45.95 7.086 36.73 39.37 40.61 44.94 49.45 58.47 64.89
phasic_data 28.96 4.192 17.80 24.53 28.88 30.26 31.51 32.89 34.17

Table 7. Validation of the quality of the physiological responses

B.4.3 Lepton 3.5. Thermal imaging data recorded with Lepton 3.5 images are uploaded in a 7z format, under
the (SubjectID\Interoception) folder. Each file under the thermal_imaging_subjectID folder are named UNIX-
TIME_heat.png. Each file contains a fusion color-coded normalized thermal image recording passenger’s facial
heat with 160×120 resolution. These images are not person-discernable and we got consent upon disclosure (See
Figure 21 for an example.). While we minimized vision-related sensing which could specify one’s identify, we
included heat upon subject’s consent, considering their direct relationship with cognitive load or attention-rleated
user state.
Thermal imaging data, captured with the Lepton 3.5 camera, are stored in 7z format within the (Subjec-

tID\Interoception) directory. Each image file, located in the thermal_imaging_subjectID folder, is named according
to the UNIXTIME_heat.png convention. These images, represented with fusion color-coded scheme, provide
normalized thermal imaging of passengers’ facial heat at a 160×120 resolution. These images are designed to be
non-identifiable, ensuring privacy; consent for their use was obtained prior to data collection (for an example, see
Figure 27). In our efforts to respect privacy, we specifically minimized using vision-related sensing techniques
that could potentially identify individuals. However, with the subjects’ consent, we included thermal imaging
due to its relevance in measuring cognitive load [2] and attention-related user states [1].
We also provide the facial and landmark detection results in our dataset for further analysis, specifically

focusing on the temperature distribution of the face or the temperature of specific facial landmark positions. We
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Fig. 26. Example data and formatting of the streamLog_wearables_subject05.hdf5 file.

Fig. 27. Exemplary thermal image captured for participant 23 (1695616151297_heat.png under the directory ther-
mal_imaging_subject23).

used the pretrained models by Kuzdeuov et al. [78] and Abdrakhmanova et al. [3] to extract the facial position
and landmarks (Figure 28). The extracted facial recognition results are provided in .csv files for each participant,
named subjectID_thermal_heat.csv.

B.4.4 Skeletal Tracking and Facial Meshes. We provide the detected skeletal tracking and facial meshes in JSON
file format, named UNIXTIME_d435.json. The joints and landmarks were extracted using MediaPipie framework
and follow its data protocol [87]. For body_joints, it stores a list of dictionaries, each representing a joint with x,
y, z, and visibility keys. For facial_landmarks, it contains a list of lists (one per detected face), where each list
includes dictionaries for individual landmarks with x, y, and z coordinates.
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Fig. 28. Face and facial landmark detection for thermal image captured for participant 23 (1695616151297_heat.png under
the directory thermal_imaging_subject23). (a) numbering convention of the landmarks [3, 78], (b) exemplary result for our
dataset

Fig. 29. Example facial landmark JSON file (1695616083780_d435.json of subject 27) plotted as meshes.

• width: Specifies the image’s width in pixels. This parameter is used for converting the normalized x-
coordinates of landmarks back to their absolute pixel positions on the image.

• height: Specifies the height of the image in pixels. Similar to the width, this parameter is crucial for
converting normalized y-coordinates of landmarks to their absolute pixel positions. The height ensures that
landmarks can be accurately plotted on the vertical axis of the image, taking into account its original size.

• body_joints: Contains an array of detected body joints, where each element is a dictionary detailing the
normalized coordinates (x, y, and optionally z) and the visibility score. The ‘x‘ and ‘y‘ coordinates are
fractions of the total ‘width‘ and ‘height‘, respectively, meaning that multiplying these normalized values
by the image’s actual dimensions (width for ‘x‘, height for ‘y‘) will yield the landmark’s pixel position on
the image.
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– x: Normalized horizontal position of the joint, ranging from 0 (left edge) to 1 (right edge).
– y: Normalized vertical position of the joint, ranging from 0 (top edge) to 1 (bottom edge).
– z: Depth information of the joint, relative to the plane of the camera.
– visibility: Likelihood of the joint being visible, with 1 indicating high visibility.

• facial_landmarks: MediaPipe face mesh provides 468 3d facial landmarks, covering facial features such as
the eyes, eyebrows, nose, ears, mouth, and the overall facial silhouette.
– x, y, z: An array of arrays, each corresponding to a detected face, with sub-arrays containing dictionaries
for each landmark. These landmarks are also specified in normalized coordinates, which can be scaled to
pixel positions using the ‘width‘ and ‘height‘ of the image.

B.5 Annotation Tags
B.5.1 Explanation demands. Labeled by the protocol described in section 3, the UNIX timing at which people
demanded explanations and the corresponding demanded explanations are provided in CSV file format. We also
provided the encoding used to classify the explanation types (in terms of ‘what’ and ‘what+why’ framework,
and content-relevant encoding for the Sankey diagram). Figure 31 shows exemplary data and formatting of the
Explanation_subject23.csv file.

Fig. 30. Example data and formatting of the obd_subject05.csv file.

B.5.2 NDRT. We included Non-Driving Related Tasks (NDRT) annotations with UNIX timestamps in CSV format.
This complementary tags are intended to capture scenarios where explanations might compete for a passenger’s
attention, potentially disrupting activities or the delivery of necessary information during NDRTs.
The NDRT data annotation details passenger activities with a UNIX timestamps tagged. Passegner’s NDRT

action information labels are as actions such as ‘access and manage the items in and on the dashboard compart-
ment.’, ‘relaxing in the passenger’s seat’, ‘watching outside the window’, ‘wathching inside the car’, ‘drinking
water’, ‘eating a snack’, ‘interacting with a mobile phone’, ‘reading a book’, ‘reading a magazine’, ‘reading a paper’,
and ‘having a phone call’. An illustration of this data structure and format is provided in Figure 31, showcasing
the NDRT_subject23.csv file.
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Fig. 31. Example data and formatting of the obd_subject05.csv file.
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C Neural Network Layers

Model Layer-wise Structure

LSTM Dense

LSTM(64, return_sequences=True)
Dropout
LSTM(64, return_sequences=False)
Dense(64)
Dropout
Dense(1, activation=‘sigmoid’)

Bi-LSTM Dense

Bidirectional(LSTM(32, return_sequences=True))
Dropout
Bidirectional(LSTM(32, return_sequences=False))
Dropout
Dense(units=128, activation=‘relu’)
Dropout
Dense(units=64, activation=‘relu’)
Dropout
Dense(units=1, activation=‘sigmoid’)

Attention-LSTM Dense

LSTM(64, return_sequences=True)
Lambda(Attention())
Dropout
Flatten()
Dense(128, activation=‘relu’)
Dropout
Dense(1, activation=‘sigmoid’)

Attention Bi-LSTM Dense

Bidirectional(LSTM(64, return_sequences=True))
Lambda(Attention())
Dropout
Flatten()
Dense(128, activation=‘relu’)
Dropout
Dense(1, activation=‘sigmoid’)

LSTM-CNN Dense

LSTM(64, return_sequences=True)
Dropout
Conv1D(filters=32, kernel_size=3, activation=‘relu’)
Conv1D(filters=32, kernel_size=3, activation=‘relu’)
MaxPooling1D(pool_size=2)
Flatten()
Dense(128, activation=‘relu’)
Dropout
Dense(1, activation=‘sigmoid’)

Bi-LSTM-CNN Dense

Bidirectional(LSTM(64, return_sequences=True))
Dropout
Conv1D(filters=32, kernel_size=3, activation=‘relu’)
Conv1D(filters=32, kernel_size=3, activation=‘relu’)
MaxPooling1D(pool_size=2)
Flatten()
Dense(128, activation=‘relu’)
Dropout
Dense(1, activation=‘sigmoid’)

Table 8. The structure of the evaluated neural network models
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