

CAESSA: Visual Authoring of Context-
Aware Experience Sampling Studies

Abstract
In this paper we present a toolkit that enables HCI
practitioners to visually author and setup Context-
Aware Experience Sampling studies—CAESSA (Context-
Aware Experience Sampling Study Authoring).

Author Keywords
Experience Sampling Method; Context Awareness; Vis-
ual Editor.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces — Graphical User Interfaces, User-Centred
Design; H.5.3 [Information Interfaces and Presenta-
tion]: Group and Organisation Interfaces — Computer-
Supported Cooperative Work.

General Terms
Human Factors.

Introduction
A reoccurring challenge for designers in the fields of
Ubiquitous Computing and Computer-Supported Coop-
erative Work is the need to gather user requirements or
evaluate their systems in the field rather than in la-
boratory settings.

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Mirko Fetter, Tom Gross

Human-Computer Interaction Group

University of Bamberg

96045 Bamberg

<firstname.lastname>(at)uni-

bamberg.de

Maximilian Schirmer

Faculty of Media

Bauhaus-University Weimar

Bauhausstr. 11, 99423 Weimar

<firstname.lastname>(at)medien.uni

-weimar.de

The Experience Sampling Method (ESM), derived from
social psychology [2], has been successfully applied
and adapted to research in these fields to meet this
challenge. Through repetition, the ESM enables re-
searchers to capture rich and in-depth data that de-
scribes a persons inner states or feelings in the mo-
ment they occur. It therefore has been used to study
different questions around mobile phone usage and for
evaluating ubiquitous computing applications [1], to get
insights into the interruptibility of managers [5], as well
as for acquiring labels for building predictive user mod-
els [7].

Intille et al. [6] improved the approach by introducing
the concept of Context-Aware Experience Sampling
(CAES) where sensor events trigger the presentation of
specific questions. This way the sampling can be con-
centrated on situations or activities of interest, thus
reducing the effort for the user. Additionally, the sensor
data can be collected and analysed to give further in-
sights.

Still the authoring of such studies is a considerable ef-
fort involving programming and scripting skills to setup
the study. In this paper, we present CAESSA, a toolkit
that enables HCI researchers and practitioners to setup
complex CAES studies by means of an easy to use vis-
ual editor. It allows researchers the easy setup of com-
plex CAES configurations involving multiple sensors.

Related Work
Several tools have been developed to support CAES,
with the CAES-Tookit by Intille et al. [6] being the first.
The CAES-Tookit is developed for PDAs and supports a
variety of question types and allows for answers via the
text input, microphone and camera. Beyond an imple-

mented GPS sensor, a heart-rate monitor was planned.
New studies can be loaded onto the device via a com-
ma-delimited text file. The MyExperience (Me) Toolkit
[1] for Windows Mobile devices was inspired by Intille
et al.’s work and advances the authors’ own work on
the iESP tool. The freely available software supports 50
built-in sensors and allows for different sampling strat-
egies, question types, and answering modalities. Stud-
ies are authored via an XML document that contains the
questions as well as scripts that trigger the different
questions.

While these tools offer excellent support for the partici-
pants of such CAES studies, the authoring of these
studies can be quite challenging for the researcher. For
example, the Me Toolkit requires the author to write
Java-like code into the XML file to generate a sensor-
based trigger (e.g., eleven lines are needed to trigger a
question when the heart-rate monitor exceeds a specif-
ic threshold). More complex setups (e.g., with several
sensors) seem to require substantial programming
skills.

CAESSA therefore focuses on the easy, visual creation
and authoring of complex CAES study setups, that also
allows for an explorative approach.

CAESSA Concept
CAESSA presents opportunities for reducing the effort
for participants and authors, collecting labels for ma-
chine learning, and conducting usability testing for
ubiquitous and desktop applications. It allows research-
ers to conduct studies with context-triggered ESM that
only samples during user activities of interest. This re-
sults in less burden for the participants, compared to
regular ESM studies. It can also be used to collect la-

bels for machine learning and can help to find transi-
tion points between states for activity recognition. For
usability testing, CAESSA allows to derive insights for
the requirement analysis and evaluation of ubiquitous
computing systems. The extensibility of CAESSA al-
lows integrating own sensors that capture application
usage on desktop applications and so helps to con-
duct usability testing for regular desktop applications.

Carrying out CAES studies can involve a large number
of sensors that are interconnected in complex setups.
With current tools, ESM researchers require extensive
scripting skills in order to generate the necessary log-
ic that processes the incoming sensor data in order to
trigger a sampling.

In our approach, the process of discovering and using
sensors, and integrating them into a configuration
representing the study’s logic is greatly eased by
means of visual authoring. Authors of studies select
sensors visually, inspect their current state and sen-
sor values, and design the study logic that triggers
samplings with a graphical user interface. This reduc-
es the complexity of traditional approaches that in-
volve extensive scripting or programming. All re-
quired components (i.e., sensors, logic, and sam-
plings) can either be local on the device or distribut-
ed.

CAESSA Realisation
CAESSA is composed of three parts: A daemon for
collecting sensor data and its corresponding GUI; an
editor for authoring the flow of the event stream from
the individual sensors via inference mechanisms to
trigger question actuators; and a question actuator
daemon for presenting the questions to the user in

form of a dialog. All parts are connected by the under-
lying event-based sensor platform Sens-ation [4].

The CAESSA Sensor Daemon collects data from laptop
and desktop computers. It runs as a background pro-
cess, and currently supports 30 hard- and software
sensors (cf. Figure 1) that are loaded via a plug-in
mechanism and so can easily be extended with further
sensors. The daemon handles pull sensors that are con-
stantly polled with a defined sampling rate to deliver
values (e.g., Bluetooth Devices and CPU sensor), and
push sensors that publish their values on change (e.g.,
Mouse Connected and Voice Activity sensor). Via a GUI
(cf. Figure 2), the researchers have a fine-grained con-
trol over the collection process by specifying parame-
ters like the sampling rate of individual sensors or acti-
vating or deactivating individual sensors.

Figure 2. Sensor Settings tab of the CAESSA Sensor

Daemon’s GUI, with a list of the available sensors (left)

and the settings pane for the selected Input Idle Sensor

(right).

Figure 1. Available sensors.

Each sensor reading is packed in an XML-
based event description and made available
to the further processing steps. Depending
on the sensor, each event can contain a
single value (1x1), multiple values of differ-
ent types (1xn), list of values of the same
type (nx1), or a table of values (nxm). The
daemon saves the incoming sensor events
to a sensor log and further directs the
events to the next component, the CAESSA
Visual Editor, via Sens-ation.

The CAESSA Visual Editor is based on the
CollaborationBus Aqua editor for ubiquitous
environments [9] and relies on the para-
digm of visual programming [8]. It allows
end-users to author rich configurations of
CAES components with the help of an easy-
to-use graphical user interface (cf. Fig-
ure 3). The editor represents all compo-
nents (i.e., sensors, inference engines, and
actuators) with abstract graphical user in-
terface elements and assists users in the
study setup process. Users instantiate com-
ponents with drag-and-drop and create
connections between them by drawing lines.
An inspector window allows users to explore
components, and presents configuration
options for the 12 available inference en-
gines (IE). Each inference engine encapsu-
lates specific program logic and can be
grouped into either Processors or Filters.
Processors provide a computed result,
based on a broad range of algorithms (e.g.,
for computing the moving average of sensor
values over time). Filters block events that

do not match the underlying filter criteria (e.g., filtering
out sensor events that are below a critical threshold).
We further distinguish value-based (V) and metadata-
based (M) inference engines. Value-based inference
engines use sensor values as input data, while metada-
ta-based inference engines rely on additional metadata
(e.g., occurrence time) of sensor events. Figure 4
shows an overview of the inference engines currently
available in CAESSA, alongside with the classification.

The CAESSA Question Daemon is the third component
of CAESSA. Triggered by an incoming event, the dae-
mon presents the according question to the user with a
simple dialog (cf. Figure 5). The daemon supports sev-
eral kinds of question types: multiple choice
(one/multiple answers), free text, numerical text, rat-
ing scale, and yes/no questions. Based on the question
type, the actuator will render an adequate dialog, pre-
senting the question and the answer modalities (radio
buttons, text field etc.) to the users.

Figure 5. Screenshot of the CAESSA Question Daemon

with a Yes/No question dialog example.

The dialog will be presented as the front-most window
on the current screen. The users’ input is published on
a corresponding sensor and this way saved together
with the sensor log. For each question, a timeout can
be configured, after which unanswered dialogs will dis-

Figure 3. CAESSA Visual editor with scenario con-

figurations.

Figure 4. List of available value-based (V) and

metadata-based (M) inference engines.

appear from the screen. Currently, the questions are
created via a XML document. In the future, we plan to
integrate the generation of new questions into the
CAESSA Visual Editor.

Use Scenario
In order to illustrate the capabilities of CAESSA, we
present a CAES scenario of a researcher investigating
mobile laptop work behaviour of train commuters that
can be easily authored with CAESSA. Figure 3 shows a
study setup for this scenario, with three configurations
(processing flow from sensors to actuator) of increasing
complexity.

In the first configuration (cf. Figure 3a), our researcher
is interested in finding out whether commuters that
often switch between the browser and other applica-
tions are focussed on a work task. In order to achieve
this, an application focus sensor is installed on a sub-
ject’s laptop. The sensor is connected to a StringCom-
parator to ensure that only focus events from a certain
application (i.e., the web browser Firefox) are pro-
cessed. An EventFrequencyBandpassFilter that is con-
figured to pass on only sensor events that occur a giv-
en number of times within a given period of time is the
next step in the logic to detect frequent switches. In
order to reduce the number of times the question is
shown, an EventFrequencyResampleFilter is configured.
The Filter samples the event occurrence frequency
down to one event each 30 minutes triggering the
question actuator. The actuator presents a question to
the subjects, asking if they are currently focused on a
task. This example illustrates a simple sequential work-
flow with sensor events from a single sensor that are
processed by several inference engines and trigger an
ESM question actuator.

The second configuration (cf. Figure 3b) aims at detect-
ing location changes of a subject. The researcher as-
sumes that disconnecting all connected devices from a
mobile computer is a strong indicator for an upcoming
location change (i.e., the subject is leaving and going
somewhere with the computer). Two sensors (Mouse
Connected, Power Connected) are linked to StringCom-
parator inference engines that check if the events from
these sensors contain the word “disconnected”. If the
comparators detect this keyword, the connected Logi-
cOperator inference engine triggers the question actua-
tor that presents a question asking the subjects where
they are leaving to. This example represents a more
complex parallel workflow with several sensors and cor-
responding inference engines.

The third configuration (cf. Figure 3c) aims at deter-
mining how well a subject is able to work concentrated
while on a usually crowded commuter rail. The question
is triggered based on accelerometer data from a motion
sensor and input from a voice activity sensor. The Mo-
tion sensor is an accelerometer in a subject’s mobile
computer that detects movement on three axes; it is
connected to an AverageOperator inference engine that
computes the moving average of the movement data
over time. This inference engine is connected to a
ThresholdComparator that determines if the average
movement has reached a certain threshold, indicating
that the subject’s mobile computer is moving. Another
sensor, Voice Activity, measures sound levels in the
frequency band of the human voice. It is connected to a
StringComparator inference engine that analyses the
voice activity sensor’s state. The processing chains of
both sensors are combined by a LogicOperator infer-
ence engine that configured as a logical AND operation.
Finally, an EventFrequencyResampleFilter samples the

occurrence frequency of the LogicOperator down to 1
event per 30 minutes and triggers the ESM question
actuator that presents a question with a rating scale
from “highly concentrated” to “highly distracted”. This
example illustrates a branched workflow.

Conclusion and Future Work
We presented CAESSA, a toolkit that supports re-
searchers with the setup of CAES studies by providing
an infrastructure and an editor that allows for visual
authoring of such studies. How the approach compares
to current setups that require intensive scripting and
programming has to be shown with an evaluation with
the finished system.

In the future, we plan to extend the system to also
support mobile devices. This includes the collection of
sensor data on mobile phones as well as the presenta-
tion of the questions to the user on the go, for example
via Instant Messaging [3]. Furthermore, we plan to de-
velop new IEs that extend the possibilities of the cur-
rent system. For example, an IE is planned that allows
taking previously answered questions as an input in
order to allow contingency or follow-up questions. Addi-
tionally, placeholders will allow asking questions that
reflect on specific sensor values (e.g., “Is the nearby
Network %value accessible for you?”).

An improved visualisation of the event data will simplify
the live monitoring of studies and accordingly support
researchers to adapt ongoing studies to better address
specifics of different participants. Also, in order to sim-
plify the generation of questions, a GUI will be devel-
oped that eliminates the current temporary solution to
specify the questions via an XML document.

Acknowledgment
We thank all members of the Cooperative Media Lab.

References
[1] Consolvo, S., Harrison, B., Smith, I., Chen, M.Y.,

Everitt, K., Froehlich, J. and Landay, J.A.
Conducting In Situ Evaluations for and With
Ubiquitous Computing Technologies. Int. Journal of
HCI 22, 1-2 (April 2007). pp. 103-118.

[2] Csikszentmihalyi, M. and Larson, R. Validity and
Reliability of the Experience-Sampling Method.
Journal of Nervous and Mental Disease 175, 9
(Sept. 1987). pp. 526-536.

[3] Fetter, M. and Gross, T. PRIMIExperience:
Experience Sampling via Instant Messaging. In
CSCW 2011. pp. (accepted).

[4] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A
Service-Oriented Platform for Developing Sensor-
Based Infrastructures. Int. Journal of Internet
Protocol Technology (IJIPT) 1, 3 (2006). pp. 159-
167.

[5] Hudson, J.M., Christensen, J., Kellogg, W.A. and
Erickson, T. "I'd Be Overwhelmed, But It's Just
One More Thing To Do": Availability and
Interruption in Research Management. In CHI
2002. pp. 97 - 104.

[6] Intille, S.S., Rondoni, J., Kukla, C., Ancona, I. and
Bao, L. A Context-Aware Experience Sampling
Tool. In CHI 2003. pp. 972-973.

[7] Kapoor, A. and Horvitz, E. Experience Sampling for
Building Predictive User Models: A Comparative
Study. In CHI 2008. pp. 657-666.

[8] Myers, B.A. Visual Programming, Programming by
Example, and Program Visualisation: A Taxonomy.
In CHI 1986. pp. 59-66.

[9] Schirmer, M. and Gross, T. CollaborationBus Aqua:
Easy Cooperative Editing of Ubiquitous
Environments. In CT 2010. pp. 77-84.

