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Abstract. Identifying truthful answers in web-based questionnaires can drasti-

cally increase the validity of the collected data. Approaches based on the cogni-

tive load of the person giving the answers have been successfully applied. Often, 

they rely on measuring the cognitive load with one modality (e.g., changes in the 

pupil diameter). In this paper, we present a bimodal approach that combines two 

modalities (i.e., the pupil diameter, and mouse movements). It automatically gen-

erates truth scores and weighting factors of the different modalities and produces 

human-readable graphs that allow study administrators to understand the back-

ground of the produced scores and weights.  

Keywords: Deception, Truth Detection System, Lie Detection, Eye Tracking 

Method, Mouse Movements, Cognitive-Load-Based Deception Detection. 

1 Introduction  

The detection of truth and deceit is a highly active research area with many different 

approaches that evolved over the past decades [1]. Such include the observation of be-

haviour, the analysis of speech, or (non)verbal cues [2]. Most recently, cognitive-load-

based approaches are an emerging and promising field [1, 3].  

Challenging, but best meeting practical requirements, is the truth and deceit detec-

tion within-subject instead of between-subject [2]. This requires relying on within-sub-

ject measures [2]. Such can be the measurement of the cognitive load; which can be 

determined by relying on mouse and eye tracking [3-11]. By using both modalities, one 

modality can compensate for weaknesses of the other and lead to more reliable results.  

Machine learning (ML) is a rapidly growing field, also in in the area of deception 

detection [12]. An additional trend is the usage of bi- and multimodal approaches; yet 

many approaches use linguistic features and face the limitation of not being applicable 

to other languages [12]. A further problem of ML-approaches is the interpretability of 

the generated results and classifications in general. This also leads to refusal of using 

ML-approaches in critical fields because of their ‘black-box nature’ [13, 14]. Explain-

able ML may help here [13, 15], but there is also critique [14]. Instead, interpretable 

models are recommended to be used [14].  

In this paper, we provide a comprehensive answer to the above-discussed challenges 

with the following contributions:  
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 A within-subject, language-independent bimodal cognitive-load-based deception 

detection approach for separating truthful from deceptive answers in web-based 

questionnaires, and an automated generation of per-participant models based on non-

invasive eye and mouse tracking.  

 An interpretable ML approach providing a logical model by the usage of weightings, 

using a truth score, and providing an easy to interpret and visualise graph-based fea-

ture-wise model. Figure 1 shows a schematic example of a generated model. 

 

Fig. 1. Schematic example of an interpretable model for truth and deception detection based on 

two mouse tracking and one eye tracking features. The model consisting of (i) human readable 

truth-score-graphs for each feature, and (ii) optimal weightings of features and modalities.  

We organise this article as follows: First, we give an overview over related work; fol-

lowed by our concept. Then, we describe the implementation of the concept as the In-

terpretableTruthDetection system. Finally, we evaluate the system in a systematic user 

study; and conclude the paper with a discussion and an outlook for future work.  

2 Related Work 

Cognitive-load based deception detection methods are an emerging field providing 

great opportunities [2], and particularly for distinguishing truthful from deceptive an-

swers in web-based questionnaires. They complement detecting deception by analysing 

verbal and nonverbal behaviour, or measuring arousal. Recent studies emphasise the 

increased accuracy of cognitive-load based truth detection approaches [16]. Cognitive 

load can be measured by using mouse and eye tracking modalities [17, 18]. Both mo-

dalities have been found to be precious additions to the field of truth detection [4-11]. 

For example, mouse tracking can reveal distinct behavioural types and “insights into 

the dynamics of the decision process” [19] in order to detect dishonesty. For both eye 

and mouse modalities detection is possible due to the increased cognitive load for de-

ceptive answers [11, 20].   

Mouse tracking includes various temporal and spatial features. Spatial mouse fea-

tures include the area under the trajectory curve, maximum deviation, maximum log 

ratio and x-coordinate flips [3, 21-23]. Eye tracking includes the measurement of the 

pupil diameter as window into real-time cognitive processes [17, 24].  

Combining modalities and features is a promising trend when it comes to measuring 

cognitive load [25, 26] and distinguishing truthful from deceptive answers [12, 27, 28]. 

Within-modality combinations such as combining eye fixations and pupil diameter 

fluctuations show higher effectiveness and reveal more insights [29]. When it comes to 
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combining eye and mouse tracking, [3] proposed to combine the two modalities to reach 

higher reliability of truth classifications. They introduced the AnswerTruthDetector 

system, using binary feature-wise thresholds (i.e., deceptive, truthful) for answers.  

In all approaches that aim to leverage on a combination of modalities, putting the 

different modalities in relation to each other is a challenge [30, 31]. Also for truth de-

tection, weighting of features is a common practise, e.g., for combining facial micro-

expression features [32] or within text-based web-based deception detection [33]. The 

AnswerTruthDetector [3] provided a first solution for eye and mouse tracking.  

Machine learning (ML) approaches have been suggested to identify weighting fac-

tors [9, 10, 27]. General ML concepts include the usage of training and testing data 

[34]. For small data sets the k-fold cross-validation method is recommended [34].  

However, ML approaches mostly follow a black-box principle, where the users of 

the systems do not get feedback on the reasoning behind the weighting [14]. Some ML 

approaches for truth detection provide interpretable models (e.g., based on facial im-

ages and facial cues [35]; or acoustic, visual, temporal and linguistic data [36]). Yet, 

their application areas are limited [12].  

3 Interpretable Truth Detection Concept  

In this section we present the automatic generation of interpretable within-subject mod-

els for assessing the truthfulness of answers in computer-administered questionnaires 

based on mouse and eye tracking data. We describe how to train and test the models.  

The concept follows two steps: Firstly, we generate truth score graphs for each fea-

ture. The generation of the graphs uses a scoring function. Secondly, optimal weight-

ings are determined using a rating function. This generates interesting insights, like 

comparison between features and modalities within or between participants. Both steps 

are fully automated and produce interpretable models.  

3.1 Weighting of Modalities Features Based on Continuous Truth Scores 

Both eye and mouse tracking modalities provide various single features as measure-

ment-based indicators for truth detection. All features are calculated per-question, al-

lowing the comparison of measurements. If a question has a higher value than usual for 

a single feature, it may indicate a deceptive answer. When only relying on one single 

feature and/or modality, outlier detection is relatively simple. However, with the com-

bination of features and modalities, analysis is more difficult. We provide a solution to 

this through an easy-to-understand weighting mechanism with two levels: First level is 

the weighting of features within some modality, and second level is the weighting of 

modalities. The adjustable weightings address the challenge that some features or mo-

dalities may work better than others do in general, or for a single participant. This logic 

is not limited to the particular features and modalities, but can be easily extended.  
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We use a continuous truth score ranging between zero and one (with a value closer 

to one indicating a truthful answer and vice versa). Such a score avoids a finite state-

ment about the truthfulness of an answer and sensitises for the possibility of false pos-

itives or negatives, being especially harmful in the context of truth classifications.  

3.2 Truth-Score-Graphs for Features 

Instead of using binary classifications on feature-level (as done by [3]; cf. Figure 2 A), 

we use a continuous score on feature-level. This can be best explained with an example: 

Imagine, for some participant the number of x-coordinate flips for all questions ranged 

from zero to six. For most questions, four x-coordinate flips would serve well as thresh-

old for a deceptive classification; this would not be true for one question. Here, the 

strength of a continuous truth score can be applied by returning a high but not full 

probability for a deceptive answer for this number of x-coordinate flips. This allows an 

easy lookup of a calculated feature-value for some question on a pre-generated graph 

(cf. Figure 2 B). Such a graph-based logic is especially useful in terms of interpretabil-

ity.  

 

Fig. 2. Binary classification, and new truth-score-graph based logic. (A) A binary truth score 

{0,1} for classifying an answer as truthful or deceptive (as proposed by [3]). (B) A truth-score-

graph with a truth score [0,1]. A is used for the generation of graphs.  

The graph-based logic is complex when it comes to the initial formulation (e.g., by the 

study administrator) of a graph. For this, the study administrator can be supported by 

ML algorithms for the automatic generation of truth score graphs for each feature. For 

the generation, we use a brute-forcing mechanism, calculating for each pair of <x, y> 

(where x is the value tested for and later used for lookup) the truth score y (that is, the 

result of the scoring function; cf. Section 3.4) for a given x; the concrete values for x 

are set by applying a configurable sampling rate within a configurable range. This sam-

pling rate can differ for the features and modalities.  

We train the model on feature-level using relative x-values, i.e., we use percent de-

viations from the mean value for a certain feature. This allows independence from ab-

solute measured data and provide a solution to individual within-subject differences.  
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3.3 Automatic Determination of Weightings 

With having graphs and thus, truth scores per question and per feature available, per-

modality truth scores and the combined score are calculated. For each feature and mo-

dality, weightings are defined. Our automated assessment first generates all possible 

weighting combinations. Analogue to the sampling rate, a study administrator can con-

figure the weighting steps (e.g., for each feature, use steps of 0.1 to result in the follow-

ing set: {0, 0.1, 0.2, …, 0.9, 1}); over these sets, the Cartesian product is generated. 

From the resulting set, all tuples with a sum other than one are removed. The remaining 

tuples are then applied for a single participant’s data, whereby the resulting classifica-

tions for each of these iterations are assessed by a scoring function, which is returning 

a value between zero and one (higher values indicating better resulting classifications 

for a tested tuple than for lower values). The tuple of weightings with the best scoring 

value is then used for the final proposed configuration for the concrete participant.  

3.4 Scoring and Rating Functions for Generating Graphs and Weightings 

In the above subsections, the scoring function and rating function were essential parts. 

Both algorithms have not yet been used in this domain and are the result of extensive 

and lengthy adjustments in a trial-and-error approach. The rating function returns a rat-

ing score as continuous value between zero and one. The better some distribution of 

truth scores on the complete truth score scale, the higher the resulting score is. We 

define the concrete algorithm for the rating function as follows:  

rating_function: 

  rating ← 0.5 

  R[] ← Ordered list with retrieved results (balanced  

        number of truthful/deceptive items) ascending by  

        truth score  

  c ← rating_score / floor (|R| / 2) 

  While |R| > 1: 

   f ← first element of R 

   l ← last element of R 

   If f is a requested deceptive item  

    and l is a requested truthful item: 

    rating ← rating + c 

   Otherwise: 

    rating ← rating – c 

   R[] ← Remove f and l 

  Return rating 

The scoring function consists of three parts: a naive truth score assumption, a correction 

of the score based on false negatives, and a weighting of the score based on the score 

from the rating function. The algorithm is as follows:  
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scoring_function: 

  dMd ← distance from 0 of the mean truth score for  

        requested deceptive items  

  dMt ← distance from 1 of the mean truth score for  

       requested truthful items 

  rS  ← score from rating function for the current  

     iteration 

  n   ← |all requested items (i.e., all questions)| 

  nT  ← |all requested truthful items (i.e., all  

         questions where the participant was asked to  

         answer truthfully)| 

 

  naive_assumption ← 1 – dMd 

  correction_based_on_false_negatives ← dMt * (nT / n) 

  weighting_based_on_rating_score ← 2 – rS 

 

  score ← (naive_assumption  

           – correction_based_on_false_negatives)  

           * weighting_based_on_rating_score 

  Return score 

4 Interpretable Truth Detection Implementation 

We integrate and implement the proposed concept as the Model Generation Service 

into the AnswerTruthDetector system by [3] (cf. Section 2). The component serves as 

background service (cf. Figure 3). It is based on JavaScript and node.js (version 21.4.0).  

 

Fig. 3. The system after integration of the Model Generation Service. 

The Model Generation Service is designed as a REST service running on a server. It 

provides a training and a testing mode. The training mode allows the application of the 

introduced concept, i.e., generating a per-participant model. The testing mode receives 

a trained configuration and resulting truth scores and returns the metrics for evaluating 

the validity of the produced model. The Model Generation Service is used as plugin of 

the Detector Tool, providing an easy-to-use UI (cf. Figure 4).   
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With the generation process being initiated, both components autonomously com-

municate with each other by sending and receiving required data. After the training and 

testing process has finished, the study administrator gets a first impression of the re-

sults, such as interactive boxplot visualisations. All produced data are available for fur-

ther data analysis and visualisation with other tools (like SPSS, Excel, etc.).  

 

Fig. 4. Screenshots of the integration of the Model Generation Service into the Detector Tool: 

(A) Selecting hold-out-validation or k-fold cross-validation mode. (B) Visualisation of the cur-

rent generation progress. (C) Presentation of the results after finished model generation.  

By implementing the Model Generation Service on a dedicated server, multiple in-

stances of the Detector Tool can connect to it. This way also, the computing resources 

lie outside of local machine of the study administrator, resulting in less computational 

requirements for the computer of the study administrator. For development purposes, 

the service ran on a local node.js server on an Apple MacBook Pro with a M3 Pro chip 

and 18 GB RAM. This was sufficient for a single client; yet, for more clients a more 

advanced set-up is advised.  

5 Proof of Concept 

5.1 Method 

We tested our implementation with 24 participants (18 female, 6 male, 0 diverse) with 

age from 20 to 29 years (M = 24.42, SD = 2.33). Participants were recruited with mouth-

to-mouth sampling and teaching lectures at the university. We applied the following 

criteria for selecting participants: Only the age spawn between 18 and 29 [37]; no drug 

consumption (excl. nicotine and caffeine) within the 12 hours before the study execu-

tion [38]; no former eye-surgeries with remaining scars on the cornea (due to technical 

limitations of our eye tracker); no participants with glasses (due to possible accuracy 

and precision losses by the eye tracker); and right-handed participants only [39]. For 

future studies, a reduction of these criteria should be considered; due to the limited 

sample size of this study, the above criteria were applied to reduce additional noise.  

For the conducted study half of the participants had previous experience with the 

used Questionnaire Tool (random allocation to the groups). The study included a pre-

briefing and informed consent, followed by a calibration of the eye tracker and an in-

troduction to the used tool. Then, the participants completed an intrinsic questionnaire 
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with the provided tool. For the main evaluation question—to evaluate how well we can 

distinguish truthful from deceptive answers—we chose a within-subject study design 

based on the answers within the intrinsic questionnaire (please note: we do not evaluate 

the participants, we only evaluate our proposed concept and implementation).  

The study was conducted in a lab with identical circumstances for all participants 

(esp. lighting and noise). The setup included a standard PC with Windows 10, using a 

conventional mouse for answering the questions (and recording the mouse paths). Fur-

thermore, a Tobii Pro Spectrum eye tracker was installed with 1,200 Hz.  

The intrinsic questionnaire task included answering simple questions without the 

need of preparation. We used 30 general knowledge questions from standardised ques-

tionnaires of related work—the Sheffield lie test ([37]). Example questions are ‘Is water 

wet?’ or ‘Is grass blue?’. We asked the participants to answer half of the questions 

deceptively and the other half truthfully; applying a random distribution for each par-

ticipant. Further, the order of the questions was randomised for each participant [37]. 

The sequence of steps for some question within the questionnaire was identical for all 

questions (cf. Figure 5).  

 

Fig. 5. Scheme of the sequence for each question. First, a fixation and instruction letter (lie/truth) 

is shown to the participant. After six seconds, the letter is replaced by a button to show the next 

question. By clicking this button, the question and its answer options appear.  

After having conducted the intrinsic questionnaire task with all participants, we gener-

ated optimal configurations for each participant (i.e., per-participant training), using the 

recorded mouse and eye tracking data. We used the k-fold cross-validation with k=7, 

i.e. for each participant’s questions were split into seven folds and then our implemen-

tation of our InterpretableTruthDetection concept was applied within seven iterations. 

The resulting truth scores for each requested question from the testing folds were stored, 

as well as the mean and median truth scores for requested truthful and requested decep-

tive items. Finally, mean values over all testing-folds were stored for each participant.  

5.2 Results and Discussion 

We formulate following hypotheses based on the continuous truth score characteristics:  

 H0: The truth scores for requested truthful and deceptive items do not differ.  

 Ha: The truth scores for requested truthful items are higher than for deceptive items.  

From in total 24 participants * 30 questions per participant = 720 questions, 64 ques-

tions were excluded automatically because of invalid mouse movements (i.e., the 

mouse was not moved fast enough after the question presentation—if selecting an an-

swer by moving the mouse after the completion of the decision process, the traced path 

would not reveal the mental processes), with remaining N = 656 questions. For these 
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we reach significantly higher truth scores (p = 0.00102 < .01; one-tailed) for requested 

truthful items (M = 0.4962, SD = 0.2396) than for requested deceptive items (M = 

0.4388, SD = 0.2341). Thus, H0 can be rejected.  

Comparing the mean values for each participant (i.e., the mean M- and Mdn-values 

over all testing-folds for the requested deceptive and requested truthful items) further 

supports our previous observation. For 83. 3̅% of the participants, the mean M truth 

score for requested truthful items was higher than for requested deceptive items; and 

for 79.16̅% of the participants, the mean Mdn truth score for requested truthful items 

was higher than for the requested deceptive items. Our approach performs well com-

pared to different approaches; in a recent literature review from 81 selected approaches, 

performance range was from 51% to 100%—with an often stated limitation of the ap-

plicability to the English language only [12]. The authors recommended future research 

to focus on language-independent approaches, which is the case for our approach.  

Summarised, our proposed concept and implementation does work as intended—we 

reach higher truth scores for truthful items than for deceptive items. Yet, we can still 

observe a large number of false positives and false negatives (cf. Figure 6). This em-

phasises once again to see the truth score only as a cautious assumption. Furthermore, 

it stresses out the need for a more detailed investigation on the differences between the 

individual participants (including investigating why the concept worked better for some 

participants than for others).  

 

Fig. 6. Visualised truth scores for requested truthful and requested deceptive items. (A) Box plots 

and (B) violin plots for all requested truthful and requested deceptive items.  

In the future, the analysis and comparison of the per-participant models and graphs will 

be highly interesting. This can be the comparison of the weightings (i.e., compare how 

well some modality or feature works for some group of participants compared to the 

other groups), or the comparison of the generated truth graphs for single features. As 

promising first insights serve the interpolated truth graphs of the different features. 

Even though the model training was done per-participant, we can observe very similar 

generated graphs, which strengthens the first assumption, that universal as well as 

group-based models can be derived from the per-participant models. 
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6 Conclusions and Future Work 

We introduced a concept and its implementation for the fully automatic generation of 

within-subject models for distinguishing truthful from deceptive answers in web-based 

questionnaires. This approach is independent from the spoken language and allows a 

barrier-free application due to its cognitive-load based nature, relying on non-invasive 

eye and mouse tracking modalities. More precisely, we proposed an interpretable ML 

approach—that means, not only providing some classifications that were produced 

within some black-box system, but instead providing interpretable classifications. The 

model is made up of two pillars—feature-wise truth-score-graphs and dynamic weight-

ings of features and modalities (i.e., eye and mouse tracking). Further, the model uses 

a continuous truth score that gives weight to the challenging problem of false positive 

and false negative classifications in the critical field of truth classifications. Therefore, 

it only provides a cautious assumption that assists a study administrator with analysing 

within-subject’s recorded data and nudges to not only rely on the returned score.  

ML has found a broad application when it comes to the separation of truthful from 

deceptive answers. Many approaches are of a black-box nature and entail several prob-

lems. Such can be blind faith in the resulting classification of a ML system, not under-

standing the actual logic of the implementation and possible weaknesses (e.g., biases); 

or contrary, not using such approaches at all due to ethical and other concerns within 

this highly sensitive and critical field. On the other hand, there already exist interpret-

able ML approaches for truth detection, trying to address the above problems. Yet, the 

majority of existing approaches use linguistic features and thus are working exclusively 

for a single language—which we address by using cognitive-load based features relying 

on eye and mouse tracking data. We further provide a within-subject solution, which is 

best matching practical requirements. Yet, most existing research focuses on between-

subject truth detection due to the less complexity. To the best of our knowledge, we are 

the first to provide an interpretable language-independent within-subject approach that 

relies on eye and mouse tracking modalities.  

We tested our implementation of our concept with 24 participants. The evaluation 

results are highly promising and confirm that our concept works as intended. We trained 

our model per-participant. We pay attention to the problem of few training-data by us-

ing the k-fold cross-validation method. We reached significantly higher truth scores for 

requested truthful items than for requested deceptive items (higher truth scores indicate 

a higher probability of a truthful answer and vice versa). Yet, we also faced a large 

number of false positives and false negatives, to be addressed with future optimisations.  

A highly promising insight of the evaluation results is, that the generated feature-

wise truth-score-graphs (one of the two pillars of the overall model) are very similar 

for all participants. This is a confident sign, that a definition of a universal model for 

all participants might be possible in the future. Further, we plan to investigate the per-

formance of the approach across the different participants (including personality char-

acteristics, and language and cultural differences), which will then be followed by 

providing various pre-sets for the identified groups of participants to further assist study 

administrators and to reduce the number of false positives and false negatives within a 
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certain group. Another helpful addition could be a tailored visualisation concept of the 

generated models to more extensively support the study administrator with interpreting.  

Acknowledgments. We thank the members of the Cooperative Media Lab at the University of 

Bamberg. We also thank the anonymous reviewers for insightful comments.  

References 

1. R. Weylin Sternglanz, Wendy L. Morris, Marley Morrow, Joshua Braverman. 2019. A re-

view of meta-analyses about deception detection. The Palgrave handbook of deceptive com-

munication (2019), 303-326. https://doi.org/10.1007/978-3-319-96334-1_16 

2. Aldert Vrij. 2019. Deception and truth detection when analyzing nonverbal and verbal cues. 

Applied Cognitive Psychology, 33, 2 (2019), 160-167. https://doi.org/10.1002/acp.3457 

3. Moritz Maleck, Tom Gross. 2023. AnswerTruthDetector: A Combined Cognitive Load Ap-

proach for Separating Truthful from Deceptive Answers in Computer-Administered Ques-

tionnaires. i-com - Journal of Interactive Media, 22, 3 (2023), 241-251. 

https://doi.org/10.1515/icom-2023-0023 

4. Daphne P. Dionisio, Eric Granholm, William A. Hillix, William F. Perrine. 2001. Differen-

tiation of deception using pupillary responses as an index of cognitive processing. Psycho-

physiology, 38, 2 (2001), 205-211. https://doi.org/10.1111/1469-8986.3820205 

5. R. E. Lubow, Ofer Fein. 1996. Pupillary size in response to a visual guilty knowledge test: 

New technique for the detection of deception. J. Exp. Psychol.-Appl., 2, 2 (1996), 164-177. 

https://doi.org/10.1037/1076-898x.2.2.164 

6. Ira Heilveil. 1976. Deception and pupil size. Journal of Clinical Psychology, 32, 3 (1976), 

675-676. https://doi.org/10.1002/1097-4679 

7. Xinyue Fang, Yiteng Sun, Xinyi Zheng, Xinrong Wang, Xuemei Deng, Mei Wang. 2021. 

Assessing Deception in Questionnaire Surveys With Eye-Tracking. Frontiers in Psychol-

ogy, 12 (2021). https://doi.org/10.3389/fpsyg.2021.774961 

8. Andrea K. Webb, Douglas J. Hacker, Dahvyn Osher, Anne E. Cook, Dan J. Woltz, Sean 

Kristjansson, John C. Kircher. 2009. Eye Movements and Pupil Size Reveal Deception in 

Computer Administered Questionnaires. Proceedings of the FAC 2009: Foundations of 

Augmented Cognition. Neuroergonomics and Operational Neuroscience (San Diego, CA, 

USA). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02812-0_64  

9. Cristina Mazza, Merylin Monaro, Franco Burla, Marco Colasanti, Graziella Orrù, Stefano 

Ferracuti, Paolo Roma. 2020. Use of mouse-tracking software to detect faking-good behav-

ior on personality questionnaires: an explorative study. Scientific Reports, 10, 1 (2020). 

https://doi.org/10.1038/s41598-020-61636-5 

10. Merylin Monaro, Francesca Ileana Fugazza, Luciano Gamberini, Giuseppe Sartori. 2017. 

How Human-Mouse Interaction can Accurately Detect Faked Responses About Identity. 

Springer International Publishing. https://doi.org/10.1007/978-3-319-57753-1_10Merylin 

Monaro, Francesca Ileana Fugazza, Luciano Gamberini, Giuseppe Sartori. 2017. How Hu-

man-Mouse Interaction can Accurately Detect Faked Responses About Identity. Springer 

International Publishing. https://doi.org/10.1007/978-3-319-57753-1_10 

11. Jeffrey Jenkins, Jeffrey Proudfoot, Joseph Valacich, G. Grimes, Jr Jay F. Nunamaker. 2019. 

Sleight of Hand: Identifying Concealed Information by Monitoring Mouse-Cursor Move-

ments. Journal of the Association for Information Systems, 20, 1 (2019-01-31 2019). 

https://doi.org/10.17705/1jais.00527 

12. Alex Sebastião Constâncio, Denise Fukumi Tsunoda, Helena de Fátima Nunes Silva, 

Jocelaine Martins da Silveira, Deborah Ribeiro Carvalho. 2023. Deception detection with 

https://doi.org/10.1007/978-3-319-96334-1_16
https://doi.org/10.1002/acp.3457
https://doi.org/10.1515/icom-2023-0023
https://doi.org/10.1111/1469-8986.3820205
https://doi.org/10.1037/1076-898x.2.2.164
https://doi.org/10.1002/1097-4679
https://doi.org/10.3389/fpsyg.2021.774961
https://doi.org/10.1007/978-3-642-02812-0_64
https://doi.org/10.1038/s41598-020-61636-5
https://doi.org/10.1007/978-3-319-57753-1_10Merylin
https://doi.org/10.1007/978-3-319-57753-1_10
https://doi.org/10.17705/1jais.00527


12 

machine learning: A systematic review and statistical analysis. Plos one, 18, 2 (2023), 

e0281323. https://doi.org/10.1371/journal.pone.0281323 

13. Khishigsuren Davagdorj, Jang-Whan Bae, Van-Huy Pham, Nipon Theera-Umpon, Keun Ho 

Ryu. 2021. Explainable artificial intelligence based framework for non-communicable dis-

eases prediction. IEEE Access, 9 (2021), 123672-123688. 

https://doi.org/10.1109/ACCESS.2021.3110336 

14. Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead. Nature machine intelligence, 1, 5 (2019), 

206-215. https://doi.org/10.1038/s42256-019-0048-x 

15. Vaishak Belle, Ioannis Papantonis. 2021. Principles and practice of explainable machine 

learning. Frontiers in big Data (2021), 39. https://doi.org/10.3389/fdata.2021.688969 

16. Adrianna Wielgopolan, Kamil K Imbir. 2023. Cognitive load and deception detection per-

formance. Cognitive Science, 47, 7 (2023), e13321. https://doi.org/10.1111/cogs.13321 

17. Maria K. Eckstein, Belén Guerra-Carrillo, Alison T. Miller Singley, Silvia A. Bunge. 2017. 

Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive develop-

ment? Developmental Cognitive Neuroscience, 25 (2017), 69-91. 

https://doi.org/10.1016/j.dcn.2016.11.001 

18. Hansol Rheem, Vipin Verma, D. Vaughn Becker. 2018. Use of Mouse-tracking Method to 

Measure Cognitive Load. Proceedings of the Human Factors and Ergonomics Society An-

nual Meeting, 62, 1 (2018), 1982-1986. https://doi.org/10.1177/1541931218621449 

19. Carina I Hausladen, Olexandr Nikolaychuk. 2024. Color me honest! Time pressure and (dis) 

honest behavior. Frontiers in Behavioral Economics, 2 (2024), 1337312. 

https://doi.org/10.3389/frbhe.2023.1337312 

20. Joseph Tao-Yi Wang, Michael Spezio, Colin F. Camerer. 2010. Pinocchio's Pupil: Using 

Eyetracking and Pupil Dilation to Understand Truth Telling and Deception in Sender-Re-

ceiver Games. American Economic Review, 100, 3 (2010), 984-1007. 

https://doi.org/10.1257/aer.100.3.984 

21. Jonathan B. Freeman, Nalini Ambady. 2010. MouseTracker: Software for studying real-time 

mental processing using a computer mouse-tracking method. Behavior Research Methods, 

42, 1 (2010), 226-241. https://doi.org/10.3758/BRM.42.1.226 

22. Rick Dale, Jennifer Roche, Kristy Snyder, Ryan McCall. 2008. Exploring Action Dynamics 

as an Index of Paired-Associate Learning. PLoS ONE, 3, 3 (2008), e1728. 

https://doi.org/10.1371/journal.pone.0001728 

23. Mora Maldonado, Ewan Dunbar, Emmanuel Chemla. 2019. Mouse tracking as a window 

into decision making. Behavior Research Methods, 51, 3 (2019), 1085-1101. 

https://doi.org/10.3758/s13428-018-01194-x 

24. Bastian Pfleging, Drea K Fekety, Albrecht Schmidt, Andrew L Kun. 2016. A model relating 

pupil diameter to mental workload and lighting conditions. Proceedings of the CHI '16: 

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San 

Jose California, USA). https://doi.org/10.1145/2858036.2858117  

25. Fang Chen, Natalie Ruiz, Eric Choi, Julien Epps, M Asif Khawaja, Ronnie Taib, Bo Yin, 

Yang Wang. 2013. Multimodal behavior and interaction as indicators of cognitive load. 

ACM Transactions on Interactive Intelligent Systems (TiiS), 2, 4 (2013), 1-36. 

https://doi.org/10.1145/2395123.2395127 

26. Pieter Vanneste, Annelies Raes, Jessica Morton, Klaas Bombeke, Bram B Van Acker, Char-

lotte Larmuseau, Fien Depaepe, Wim Van den Noortgate. 2021. Towards measuring cogni-

tive load through multimodal physiological data. Cognition, Technology & Work, 23 (2021), 

567-585. https://doi.org/10.1007/s10111-020-00641-0 

https://doi.org/10.1371/journal.pone.0281323
https://doi.org/10.1109/ACCESS.2021.3110336
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.1111/cogs.13321
https://doi.org/10.1016/j.dcn.2016.11.001
https://doi.org/10.1177/1541931218621449
https://doi.org/10.3389/frbhe.2023.1337312
https://doi.org/10.1257/aer.100.3.984
https://doi.org/10.3758/BRM.42.1.226
https://doi.org/10.1371/journal.pone.0001728
https://doi.org/10.3758/s13428-018-01194-x
https://doi.org/10.1145/2858036.2858117
https://doi.org/10.1145/2395123.2395127
https://doi.org/10.1007/s10111-020-00641-0


13 

27. Gangeshwar Krishnamurthy, Navonil Majumder, Soujanya Poria, Erik Cambria. 2023. A 

Deep Learning Approach for Multimodal Deception Detection. Proceedings of the CICLing 

2018 (Mexico City, Mexico). Springer, Cham. https://doi.org/10.1007/978-3-031-23793-

5_8  

28. Mohamed Abouelenien, Veronica Pérez-Rosas, Rada Mihalcea, Mihai Burzo. 2014. Decep-

tion detection using a multimodal approach. Proceedings of the 16th International Confer-

ence on Multimodal Interaction (Istanbul, Turkey). Association for Computing Machinery. 

https://doi.org/10.1145/2663204.2663229  

29. Valentin Foucher, Anke Huckauf. 2024. Unveiling Deceptive Intentions: Insights from Eye 

Movements and Pupil Size. Proceedings of the ACM on Human-Computer Interaction, 8, 

ETRA (2024), 1-17. https://doi.org/10.1145/3655612 

30. Haibin Liu, Shengyu Fang, JI Jianhua. 2020. An improved weighted fusion algorithm of 

multi-sensor. Proceedings of the 2019 2nd International Conference on Computer Infor-

mation Science and Artificial Intelligence (CISAI 2019) (Xi'an, China). IOP Publishing. 

https://doi.org/10.1088/1742-6596/1453/1/012009  

31. Shaik Shehanaz, Ebenezer Daniel, Sitaramanjaneya Reddy Guntur, Sivaji Satrasupalli. 

2021. Optimum weighted multimodal medical image fusion using particle swarm optimiza-

tion. Optik, 231 (2021). https://doi.org/10.1016/j.ijleo.2021.166413 

32. Mengting Chen, Heather T Ma, Jie Li, Huanhuan Wang. 2016. Emotion recognition using 

fixed length micro-expressions sequence and weighting method. Proceedings of the 2016 

IEEE International Conference on Real-time Computing and Robotics (RCAR) (Angkor 

Wat, Cambodia). IEEE. https://doi.org/10.1109/RCAR.2016.7784067  

33. Lina Zhou, Yongmei Shi, Dongsong Zhang. 2008. A statistical language modeling approach 

to online deception detection. IEEE Transactions on Knowledge and Data Engineering, 20, 

8 (2008), 1077-1081. https://doi.org/10.1109/TKDE.2007.190624 

34. Sebastian Raschka. 2020. Model evaluation, model selection, and algorithm selection in ma-

chine learning. arXiv:1811.12808 [cs.LG] (2020). 

https://doi.org/10.48550/arXiv.1811.12808 

35. Borum Nam, Joo Young Kim, Beomjun Bark, Yeongmyeong Kim, Jiyoon Kim, Soon Won 

So, Hyung Youn Choi, In Young Kim. 2023. FacialCueNet: unmasking deception-an inter-

pretable model for criminal interrogation using facial expressions. Applied Intelligence, 53, 

22 (2023), 27413-27427. https://doi.org/10.1007/s10489-023-04968-9 

36. Hamid Karimi. 2018. Interpretable multimodal deception detection in videos. Proceedings 

of the 20th ACM international conference on multimodal interaction (Boulder CO, USA). 

https://doi.org/10.1145/3242969.3264967  

37. Evelyne Debey, Maarten De Schryver, Gordon D. Logan, Kristina Suchotzki, Bruno Ver-

schuere. 2015. From junior to senior Pinocchio: A cross-sectional lifespan investigation of 

deception. Acta Psychologica, 160 (2015), 58-68. 

https://doi.org/10.1016/j.actpsy.2015.06.007 

38. Sunpreet S. Arora, Mayank Vatsa, Richa Singh, Anil Jain. 2012. Iris recognition under al-

cohol influence: A preliminary study. Proceedings of the 2012 5th IAPR International Con-

ference on biometrics (ICB) (New Delhi, India). IEEE. 

https://doi.org/10.1109/ICB.2012.6199829  

39. Eric Hehman, Ryan M. Stolier, Jonathan B. Freeman. 2015. Advanced mouse-tracking ana-

lytic techniques for enhancing psychological science. Group Processes & Intergroup Rela-

tions, 18, 3 (2015), 384-401. https://doi.org/10.1177/1368430214538325 

 

https://doi.org/10.1007/978-3-031-23793-5_8
https://doi.org/10.1007/978-3-031-23793-5_8
https://doi.org/10.1145/2663204.2663229
https://doi.org/10.1145/3655612
https://doi.org/10.1088/1742-6596/1453/1/012009
https://doi.org/10.1016/j.ijleo.2021.166413
https://doi.org/10.1109/RCAR.2016.7784067
https://doi.org/10.1109/TKDE.2007.190624
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1007/s10489-023-04968-9
https://doi.org/10.1145/3242969.3264967
https://doi.org/10.1016/j.actpsy.2015.06.007
https://doi.org/10.1109/ICB.2012.6199829
https://doi.org/10.1177/1368430214538325

