
PILS: Advanced Instant Messaging in e-Learning
Based on an Open Implementation

Mirko Fetter, Tom Gross
Faculty of Media

Bauhaus-University Weimar
99423 Weimar, Germany

<firstname.lastname>(at)medien.uni-weimar.de

Ab s t r a c t—In e-learning platforms the social
interaction between students and teachers as w e l l
as among students is important for effective and
e f f i c i e n t l e a r n i n g . T h e r e f o r e , e - l earn ing
platforms need technological support for o n l i n e
presence and communication. In this paper w e
present the Presence in Learning Spaces (PILS)
infrastructure, which provides advanced c o n c e p t s
for mutual presence information and s e a m l e s s
communication between online users based on a n
open implementat ion . I ts nove l c o n c e p t s
support course-specific mutual presence and
c o m m u n i c a t i o n , m u t u a l c o m m u n i c a t i o n
awareness , and e - l ea rn in g – s p ec i f i c o n l i n e
states . I ts open implementat ion l e v e r a g e s
remote control through course and user
a d m i n i s t r a t i o n s e r v i c e s , p r e s e n c e and
communication control services, and data and
inferencing services. The PILS infrastructure is
part of the Adaptive Learning Spaces (ALS)
platform, developed in the Adaptive Learning
Spaces (ALS) EU-project.

Ke yw o r d s— C o m p u t e r - S u p p o r t e d C o o p e r a t i v e
Work; Instant Messaging; Distributed S y s t e m ;
Open Implementation.

I. INTRODUCTION
The social interaction between students and teachers as

well as among students is important for effective and
efficient learning. Therefore, e-learning platforms need
technological support online communication [36].

Simply using separate communication tools parallel
to the e-learning application does not account for the inter-
woven activities that are typical for user switching
between their primary task, in our case learning, and their
secondary task, in our case communication for mutual
exchange and help [14]. Furthermore, learning is a highly
focused task for the students and so—although the
connection between the users is important and can be
beneficial for their success—the cost of interruption is
high [25]. And so disruption outweighs the benefits of
mutual availability [20].

In this paper we present the Presence in Learning
Spaces (PILS) infrastructure, which provides advanced
concepts for mutual presence information and seamless
communication between students and teachers and among
students based on an open implementation. It can be used

like existing instant messaging systems (e.g., ICQ [22],
Skype [35])—with standard presence information and
online text, audio, and video chat capabilities. It provides
novel concepts for course-specific mutual presence and
communication, mutual conversation awareness, and e-
learning specific online states. Furthermore, it is based on
an open implementation leveraging remote control
through course and user administration services, presence
and communication control services, and data and
inferencing services.

The PILS infrastructure is part of the Adaptive
Learning Spaces (ALS) platform, developed in the
Adaptive Learning Spaces (ALS) EU-project. The ALS
platform provides teachers and students with advanced
support for learning management with adaptive delivery of
hypermedia content, adaptation authoring, as well as
adaptive presence and communication [2].

In the next section we present the concepts for the
advanced instant messaging and the open implementation.
We describe the implementation of PILS. We then
illustrate the user interaction in a scenario. We provide an
overview of related work. Finally, we draw conclusions.

II. CONCEPT
Learning spaces enable distributed students to develop

knowledge together in a shared activity. In contrast to real-
world learning where people physically meet in a
classroom and discuss the material or can ask questions,
learning spaces need to provide special mechanisms to
support this information exchange. Stahl [36] emphasises
the importance of collaboration in computer-supported
cooperative learning—therefore, it should provide
technology that stimulates and sustains interaction among
students. Gutwin [19] argues that systems for
collaborative learning should support awareness to foster
the positive effects of group learning. This is where the
concepts behind the PILS infrastructure bring to bear.
PILS is designed to support awareness and to offer novel
means of communication and interaction in distributed
learning, as we explain in the following in more depth.

A. Advanced Instant Messaging
Providing users with awareness information is a key

requisite for computer-supported cooperative work systems
[17]. Knowing about the presence, the activities, and
availability of peer users is positive for the cohesion and
effectiveness of a group of learners as well as for the result
of each individual. Awareness information can generate an

understanding about what other users are currently doing
[12], can help to estimate if it is a good time to establish
communication [7], or foster the feeling of being
connected and establish a shared sense of community [13].
So, PILS offers basic awareness about the presence of
other users via online states.

Supporting asynchronous and synchronous
communication in distance learning is beneficial for social
presence, learning process and outcome, and the flexibility
in terms of anytime and anywhere learning. This is
particularly the case for learning techniques that go beyond
pure memory and comprehension [6]. So, PILS offers
dyadic text, audio, and video chat. As in learning scenarios
teamwork is often appropriate, PILS also supports multi-
user text chats among course members.

Communication has from a learners’ perspective a
trade-off between contacting fellow learners to go through
the material together, and deeply concentrating on a
learning task without. PILS introduces three central
concepts for advanced instant messaging tailored to
adaptive learning spaces in order to provide the user with
means to deal with that trade-off;

The first concept are of course-specific online states
and communication. Each user can be a member of one or
more courses. For each course a learner is subscribed to in
the learning platform, PILS provides a separate buddy list
showing only the participants of this course. Accordingly,
if users are subscribed to more than one course, they can
switch between the different courses, to see their online
fellow students for each course. A specific online state for
each course gives the users the freedom to adapt their
presence and availability settings according to their
communication needs per course. Formally the model can
be formulated as follows: Every user has a set of registered
courses (R) and a set of presence relations between the
courses and online states (P); and every course has one or
more users.

Users: U = {ui | i ∈ Ν }
Courses: C = {cj | j ∈ Ν }
Online states: O = {ok | k ∈ Ν }
R, P are sets:
∀u ∈ U: u = {R,P}
where R = {c1,...,cn}
∧ P = {p11,...,pnk} | pij = ci x oj

where ci ∈ C ∧ R ⊆ C, oj ∈ O, R ≅ P,
∀ci ∈ R ∃ oj ∈ O

∀c ∈ C: c = {u1,...,un} | ui ∈ U, c ≠ ∅

The second concept we introduce in PILS is
communication awareness. Communication awareness
helps the initiator of a conversation to see if the person to
be contacted is engaged in other conversations. While in
the real world people typically engage in a limited number
of parallel conversations, they can have multiple parallel
text chats online [29]. Although technically possible, in a

learning context, where the cognitive load is usually high
on the first level task, a user may still not want to handle
too many parallel conversations as a background task. So,
the PILSClient indicates in the conversation status,
information whether the designated callee is currently in a
conversation and over which channel: text, audio, or
video. Since users can have multiple text chats in parallel,
an additional number indicates how many simultaneous
text chats are currently open for the callee.

The third concept are the e-learning–specific online
states ReadyToHelp and RequiringHelp, which are
available besides the other online states that most instant
messaging systems offer today (i.e., available,
unavailable, away, and invisible). ReadyToHelp indicates
that a user is an expert in a specific course and is available
to assist fellow learners. RequiringHelp signifies that a
user has open questions in a specific course and looks for
help from fellow students. The particular course for which
a user sets one of the two states provides the adequate
context to conclude on what topic the user is willing to
help or the help is needed. In the current version of PILS,
the users can set the online states themselves. When the
system is stronger integrated into the adaptive e-learning
platform, the e-learning management system can analyse
the performance of the student in a specific course and
then automatically adapt the online states.

B. Open Implementation
As discussed earlier PILS is developed to be fully

integrated in an adaptive learning space. For this purpose
PILS provides concepts for extensible remote controlling.
The broad range of services offered can be divided into
three categories: course and user administration services,
presence and communication control services, and data and
inference query services.

Course and User Administration Services
In PILS, remote administration is a prerequisite for the

seamless integration into e-learning environments. This
way the system can ensure that there is only a single
point of administration and so minimise the effort for the
user. When a new user is registered or an existing user
registers for a new course or leaves a course in the e-
learning platform, this can be put straight through to the
PILSServer. PILS automatically adapts the system to the
new conditions; new users are created, existing users are
added to or removed from courses. The users can
immediately log into PILS and have all enrolled courses
equipped with all fellow students present to start
communication.

Some examples of methods are: registerUser,
unregisterUser, addUserToCourse, removeUserFrom-
Course.

Presence and Communication Control Services
In PILS, services for controlling PILSClients at

runtime are important for automatically adapting the
presence and communication. This can, for instance, be
used to automatically log a user into PILS from within
the e-learning platform. Also, the online states of users
can be set remotely. This helps to align the settings from
the e-learning platform to the settings in PILS. If the user

is working on a specific course in the e-learning platform,
the online state of the user can be adjusted
accordingly—for instance, to available for that course and
to unavailable for the other courses of the user. Another
possibility is to initiate multi-user text chats among a
group of students from outside. This can be initiated
automatically by an adaptation mechanism in the e-
learning platform or manually by a teacher who wants the
students to collaborate on a specific topic.

S o m e e x a m p l e s o f m e t h o d s are:
setUserOnlineStatus, openMultiUserTextChat,
sendMessageToMultiUserTextChat, closeMultiUser-
TextChat.

Data and Inference Query Services
The third category of methods for remote calls in PILS

includes methods that allow querying of usage data. These
methods provide detailed communication metadata that can
be used in an adaptive learning space in order to adapt the
system to the communication patterns of individual users
or a course. PILS continuously collects data from the
users’ activities (e.g., login and logout, changes to online
states, online conversations). These data are then provided
to the adaptive learning space. PILS makes data available
that is specific to the communication of single users, of
dyads of users, and of courses by continuously capturing
and inferring on data and building and maintaining a model
of the communication patterns. Typical data that are of
interest to an adaptive learning space and can be retrieved
from PILS are the following. The start and end times,
duration and frequency of conversations of any specified
dyad. Activity maps of single user or a specific course on
hourly or daily basis can reveal rhythmic patterns of
usage. Statistics on initiators of conversations, about
reciprocity of conversations, about the average response
time for communication requests and so on can be

inferred. With this input the adaptive learning space can
not only recommend a student who has the knowledge to
help a fellow student but can also estimate how likely that
student will answer and how likely the student will be met
online. This can significantly increase the value of the
recommendation of an expert.

PILS offers a range of methods for data and inference
query. Some examples of methods related to individual
users are: getUserOnlineStatus, analyseStateUsage,
analyseUserDaytimeActivity, analyseUserActivity,
getUsersConversationPartners, getFirstResponse-
Time, getResponseBehaviour, getAverageConversa-
tionTime . Some examples of methods related to
conversations and messages are: g e t S t a r t -
TimeOfConversation, getEndTimeOfConversation,
getAverageDurationOfConversation, getFrequency-
OfConversation, getInitiatorOfConversation, get-
ReciprocityOfConversation, getConversationRes-
triction, getAverageResponseLength, parseForKey-
w o r d . Some messages specifically related to
communication channels: getActiveCourses, get-
ChannelsOfCourse, getConversationChannels, ana-
lyseChannelUsage, analyseAllCourseCommunication.
Several methods include aspects of the courses; some
methods explicitly related to courses are: analyse-
CourseDaytimeActivity, analyseCourseActivity.

III. IMPLEMENTATION
In the following we give an overview of the

architecture of PILS and illustrate its orchestration of
subsystems and components. The PILSClient and the
PILSServer are implemented in Java SE 5.0 and optimised
for Mac OS X and Windows XP. Figure 1 provides an
overview of the structure of the PILSServer and
PILSClientand their subsystems and components.

Figure 1. PILS component diagram consisting of PILSServer and PILSClient.

A. PILSClient
In this section we describe the implementation of the

two core concepts for instant messaging—text, audio, and
video chat as well as awareness—and the core concept of
the open implementation. The PILSClient is realised as
standalone Java application, and can be deployed and
started with a single click over the network directly out of
an e-learning platform via Java Web Start Technology.

Core Concepts for Instant Messaging
The implementation of the PILSClient and its text,

audio, and video chat are based on different protocol and
implementations for text and for audio and video. In order
to enable dyadic and multi-user text chats the eXtensible
Messaging and Presence Protocol (XMPP) [32] based on
the Smack API library [24] is used. For initiating audio
and video chats, calls are handled by the Session Initiation
Protocol SIP [31] based on the Java API for SIP
Signalling (JAIN SIP) [30].

When a user initiates a text, audio, or video call in the
graphical user interface of the PCGUI, this call is forwarded
as a method call to the PCCore. The PCCore then forwards
the call to the PSXMPP_SIPConnector. For text chat no
initialisation is needed and text messages are simply sent
via XMPP. For audio and video chat calls are translated
into SIP calls. The SIP calls are routed via the
PILSServer to the respective other PILSClient as
invitations. After the other PILSClient has responded with
an ok, the initiating PILSClient sends an acknowledge and
the session starts. The audio and video signals are then
delivered between two clients by the PCAV via the Real-
time Transport Protocol RTP [34].

Since the PILSClient supports audio and video
communication both on Windows XP and on Mac OS X
as well as cross-platform, specific treatment of RTP in the
PCAV is necessary. A solution where JMF can be used for
capturing and streaming on Windows and QuickTime for
capturing and streaming on Mac OS X was not
feasible—in cross-platform video conferencing the two
frameworks could not decode the streams of the respective
other system. Therefore, on Windows XP RTP streaming
and audio and video capturing are handled by the Java
Media Framework JMF [37]. On Mac OS X the JMF has
no access to native methods that allow capturing audio and
video data from microphones and cameras. Therefore, here
the processing in the PCAV is the following: the
QTAudioPullBufferDataSource and the QTVideoPull-
BufferDataSource implement a JMF PullBufferData-
Source interface, and the QTAudioPullBufferStream and
QTVideoPullBufferStream implement a JMF Pull-
BufferStream interface for audio and for video capturing
access microphone and camera, and provide JMF
compatible data to the RTPManager. The Java Sound API
is used to sample audio from the microphone and
QuickTime for Java [5] for receiving video data from the
camera. The data is then transformed to comply with the
requirements of JMF and is accessible through the two
PullBufferStreams read() methods. This way also
JMF’s RTPManager can handle sending and receiving
audio and video streams.

The implementation of the PILSClient and its
awareness support is based on two different protocols.
XMPP is used to transport all online states. Yet, the basic
online states (i.e., available, unavailable, away, invisible)
are handled with XMPP standard online states, whereas the
e-learning–specific online states (i.e., readyToHelp,
requiringHelp) are processed as status messages. In the
user interface all basic and e-learning–specific online states
are handled equally, so users do not see any difference.
XML-RPC [38] is used to transport all conversation
states. The PCSensors capture data on the initiation and
termination of text, audio, and video chats, and sends these
data to the PSSensBase subsystem of the PILSServer via
XML-RPC, where the conversation status for each user is
inferred (cf PILSServer below). The PCSsensors also
captures other meta-information on the users’
communication behaviour. Via a publish-subscribe
mechanism the PCSensors is then informed over the
inferred communication state of every user in the rosters.

Open Implementation in the PILSClient
The open implementation of the PILSClient allows

for remote control of the PILSClient in three different
ways. First, by utilising a parameterised Java Network
Launching Protocol (JNLP) file in the Web browser using
the Java Web start technology, the e-learning platform can
provide users who are already logged into the e-learning
platform with a user interface element that, when pressed,
automatically downloads, starts, and logs the users into
PILS. The PILSClient than receives a list of all courses
the users are subscribed to and automatically logs them in.
Second, the remote changing of online states is done
directly on the PILSServer. The PILSClient automatically
retrieves new remotely set online states for all buddies on
the rooster directly via XMPP. Changes to the users own
online states are propagated to the PILSClient via
publish-subscribe from the PILSServer. Thirdly, multi-
user text chats that are initiated remotely are also sent via
XMPP. In this case the remote commands are sent from
the PILSServer to the PILSClient in the properties of the
message that the user wants to send. These are then
processed by the PILSClient and lead to an automatic
opening of a multi-user text chat window.

B. PILSServer
In this section we give a general overview, and discuss

the core concept of open implementation. The PILSServer
offers a single point of access for PILSClients as well as
for e-learning platforms that want to take advantage of the
PILS functionality via remote control. It is programmed
in Java and leverages a series of services that are
seamlessly integrated.

Core Concepts for Instant Messaging
The core concepts for instant messaging in the

PILSServer are straight-forward. Dyadic and multi-user
text chat is handled by the PSXMPPDaemon, an integrated
Openfire server [23]. The initiation of audio and video chat
is handled by the PSSIPDaemon, an integrated Brekeke SIP
proxy and registrar [9]. Online states are also handled by
the PSXMPPDaemon. The PSSensBase—a sensor-based
infrastructure based on the Sens-ation platform
[15]—receives the information from the PILSClient. This

information is routed to the PSInferencing subsystem,
which, for instance, calculates the current conversation
states for each user and passes this information back to
PSSensBase, where it is published to the PILSClients of
all currently subscribed users.

Open Implementation in the PILSServer
The open implementation for the remote control of the

course and user administration services is primarily based
on the integration and smooth interplay of the PSCore
with PSSensBase, PSXMPPDaemon, and PSSIPDaemon for
course-specific awareness and communication.

The PILSServer administrates multiple courses for
each user—that is, for each user in each course we need a
specific online state, conversation state, and particularly
one roster of course buddies. Since most instant
messaging platforms support only one online state as well
as one roster for each user, the PILSServer needs to extend
these capabilities of existing platforms. The PILSServer
creates several accounts for each user: one account per user
and per course for the PSXMPPDaemon and the PSSIP-
Daemon. For each course a shared group is created on the
PSXMPPDaemon . Shared groups, like courses, are
symmetrical—that is, a shared group automatically adds
all its users to the rooster of any other user in this group.
So, the server can automatically manage the roosters for
users by adding new users when they register for a course

and removing them when they unregister from a course.
The administration of multiple courses for each user

works as follows: The PILSServer offers a single point of
access via XML-RPC in P S G a t e w a y for the
administration of users and their courses, and handles all
necessary steps in the background. The PSGateway works
as a proxy to the PSCore that has access to the domain
model of all users and their subscribed courses, centrally
backed up in PSSensBase . For this purpose the
component PSSensBaseAdapter provides an entry point
to the event-based data structure of PSSensBase for the
PSCore by providing methods like registerUser or
addUserToCourse that are then transformed to
PSSensBase conform XML calls. The PSCore delegates
calls for creating accounts, etc. to the PSXMPPDaemon and
PSSIPDaemon. The XMPPDaemonAdapter and SIPDaemon-
Adapter are thereby responsible for passing calls to their
respective daemon by translating them to http calls to the
administration interfaces of the particular service.

Since this interplay is complex, we provide the user
registration and addition of a user to a course via XML-
RPC in an example sequence diagram (cf. Figure 2).

The call flow in this sequence diagram is the
following for new users. When users register in the e-
learning platform and subscribe for their courses, the e-
learning platform calls the registerUser method of the

Figure 2. Sequence diagram for user registration and the addition of a user to a course.

PSGateway of the PILSServer via XML-RPC. The
method is forwarded to the PSCore. The PSCore passes
the user ID, the password, and the list of courses of the
user via the PSSensBaseAdapter in the PSSensBase,
where the credentials are stored.

Afterwards, in a loop, the users are added to every
course they have registered for by calling the PSCore’s
addUserToCourse method, which than runs through the
following steps for each course. At first the PSCore stores
the information about the user subscriptions to the course
in PSSensBase via the PSSensBaseAdapter. The PSCore
then retrieves a list of all available courses from the
PSXMPPDaemon via the PSXMPPDaemonAdapter. If a user
is the first one to register to a course, a new course is
created in a two-step process: a new shared group is created
on the PSXMPPDaemon, and a ghost user account is created
for this course and added to the shared group. After the
course is created—or if the course already existed—a
course-specific account of the form userID$courseID@-
pils is generated for the users. With this account
information the XMPPDaemonAdapter registers the users
and adds their accounts to the shared group with the add-
AccountToCourse method, both at the PSXMPPDaemon. In
the next step the PSCore initiates the creation of a SIP
account of the same form userID$courseID@pils via the
PSSIPDaemonAdapter. After both accounts are generated
the account information is stored together with other user
information via PSSensBase and a true is delivered back
by the addUserToCourse method to the caller.

After all courses have been processed in the loop, the
PSCore hands back an accountList based on all these
results via XML-RPC to the caller.

If a user is already registered, this user can be added to
courses by directly calling the addUserToCourse method.

After the users are registered and added to their courses,
the PILSClient logs into the PILSServer by providing
userID and password, the PILSClient receives a list of
the accounts the user is registered for and autonomously
logs into the PSXMPPDaemon and PSSIPDaemon.

The call flow to unregister users or remove them from
a course has a similar complexity.

The open implementation for the remote control of the
presence and communication control services is divided
into setting the online states of users, and starting a
multi-user text chat. For online states, the PSGateway
passes the call from the remote caller containing the user,
the course, and the new online status to the PSCore. The
PSCore fetches the user’s account information from
PSSensBase and logs into the XMPP account via the
PSXMPPDaemonAdapter, changes the online state, and
logs out again. The new status is then transmitted to all
buddies via XMPP. The PSSensBase-Adapter notifies
the users client via XML-RPC. For opening of a multi-
user text chat, a similar call flow is used. But in this case
the PSXMPPDaemonAdapter uses the ghost user account
instead, created in every course and not visible to clients.
With this account the PILSServer logs in and sends a
message with special properties to all users of a course.

IV. USER INTERACTION WITH PILS
In this scenario we demonstrate how users can interact

with PILS in order to have sophisticated online presence
and smooth online communication. The screenshot (cf.
Figure 3) shows the student Martin’s PILS client main
window on the right, a text chat window on the top left,
and a video chat window on the bottom left.

In the main window he can see the two tabs of his
courses cscw and pils_demo, and the currently opened tab
for the pils_demo course with a list of his fellow students.
Andreas is currently online and indicates that he is
requiring help (cf. Andreas’ icon in buddy list). Tom,
Mirko and Thilo are currently offline. At the bottom of
the main window Martin can see that he has set his status
to requiringHelp for cscw and available for the pils_demo
course (cf. icons in list on bottom of the main window).

Martin is currently having a text, and audio and video
chat with Andreas. As no other users are currently online,
Andreas took the initiative and started a conversation with
Martin to ask for help (cf. chat window in upper left).
Probably Andreas had noticed by means of Martin’s
communication awareness that Martin just has ended two
other conversations—as can be seen in the chat window,
based on the opened tabs in the background, Martin indeed
had two text chats with Tom and Mirko, but both users
have left PILS already and are now offline. So, Andreas
approached Martin, since Martin is currently the only
online user in this course. In a text chat Andreas asked
Martin if he is willing to help him with a problem in the
pils_demo course. As Martin agreed, Andreas started a
video chat (cf. lower left). On start of the video chat, the
PILS client updated the communication awareness of
Andreas and Martin, showing that they currently have an
ongoing text as well as an audio and video chat (cf.
Andreas’ icon in buddy list).

This scenario shows the explicit interaction of Martin
and Andreas with the PILS client. It would be easy to
extend the scenario to situations in which the remote
control is used from other applications within the adaptive
learning space to, for instance, add or remove users from
courses, or to automatically start a text chat between
Martin and Andreas.

Figure 3. PILS client with main window, text chat window, and audio
and video chat window.

V. RELATED WORK
There are three categories of concepts and systems

with relation to the specific contributions of PILS: instant
messaging in general, instant messaging support for e-
learning, and open application programming interfaces.

Instant messaging systems in general provide basic
functionality for online presence and communication.
Examples of wide-spread systems are single-protocol
instant messaging systems supporting specific
communication protocols such as ICQ [22] and Skype
[35]; as well as multi-protocol instant messaging systems
supporting a number of protocols in parallel such as
Miranda [27] for Windows and Adium [1] for Mac OS X.
Some systems provide mechanisms for organising
contacts in groups such as iChat [4]; and some prototypes
provide concepts for multiple online identities such as
PRIMIFaces [16]. Only few prototypes aim to show
communication awareness to provide an impression of
users’ availability; examples are the OpenMessenger [8]
that supports blurred glances at other user’s computer
screens to see if they are busy, and the ChatCircles that
provide a visualisation of chatting users through the
proximity of their circular representation [11].

Overall, these systems and prototypes provide
interesting base functionality for instant messaging, with
some extensions. However, their concepts are not adapted
to e-learning and their implementation is often closed.

Instant messaging support for e-learning are
underrepresented, since course management systems for
online learning often only provide rather basic
communication functionality. For instance, the two most
wide-spread open source learning management systems
Sakai [33] and Moodle [28] mainly offer course-specific
Web-browser-based group text chat along with
asynchronous communication functionality such as in
forums. Sakai offers dyadic text and video chat with an
add-on named Agora [26], but does not provide course-
specific awareness in this tool. Another third-party
development for Sakai is the context-aware activity
notification system CANS; it informs users of activity in
the e-learning platform, also providing information on
ongoing communication [3]. However, it does not offer
direct means to initiate conversations with other users.

Compared to the mentioned systems PILS has greater
flexibility, since it supports detailed awareness of online
states and conversation states within each course, but also
global notifications (e.g., for incoming chat request) on a
global level outside the individual courses. Furthermore, it
supports both bilateral conversations among two users as
well as multilateral conversations among all online course
members. To our knowledge, there are no e-learning
platforms that support e-learning–specific online states.

Open application programming interfaces are not
common for instant messaging, but are wide-spread in
other areas. The base technology of XML-RPC [38] and
especially of its successor SOAP [18] provides great
means for open interfaces, where remote procedure calls
are encoded into XML messages that are sent via

HTTP/HTTPS. Yet, they are hardly used in instant
messaging. Some examples of instant messaging systems
with open interfaces are commercial instant messaging
systems such as IBM Lotus Sametime [21], and Trillian
[10]. Sametime is based on IBM portlets and it can be
easily integrated into these portlet applications; and
Trillian provides its own application programming
interface, primarily in the C programming language.

In comparison, the PILS infrastructure has a very
sophisticated, yet easy to access, open implementation
based on Sens-ation and its SensBase implementation
[15]. It provides a light-weight interface via XML-RPC
towards the outside, and easy mechanisms for adding new
query and inferencing engines inside.

VI. CONCLUSIONS
We introduced the PILS infrastructure providing

advanced instant messaging concepts for e-learning based
on an open implementation. We have presented the
concept and implementation, and illustrated its use in a
scenario. We have discussed related work.

There are two areas of ongoing and future activities:
From the open implementation perspective PILS needs
more sophisticated inferencing engines—that is, it needs
more sensors capturing information and more algorithms
(incl. machine learning) for inferring on the captured data
to get an even better impression on the users’ current
activity and availability. From the user interaction
concepts’ perspective we have made some initial user
studies, but systematic feedback on the current
functionality and recommendations for revisions of
existing and additional new functionality still need to be
done. The initial studies showed that users liked the
system, and did not have any concerns about privacy—this
was important for us, since in PILS information about
users is captured and presented.

In the next steps the PILS system needs to be
integrated with the Sakai e-learning environment and more
systematic user evaluations need to be made to show the
real strengths from a users’ perspective. This integration
will particularly benefit from the open implementation
and will make the user interaction more convenient (e.g.,
a user only needs to log in into Sakai, and Sakai can then
log this user into PILS via XML-RPC calls).

ACKNOWLEDGMENTS
Thanks to Thilo Paul-Stueve, Martin Klusmann,

Andreas Thenn, and all members of the Cooperative Media
Lab; Part of the work in this paper has been funded by the
EU Socrates Minerva project Adaptive Learning Spaces
(ALS) (229714-CP-1-2006-1-NL-Minerva). Thanks to the
anonymous reviewers for valuable feedback.

REFERENCES
[1] Adium Team. Adium - Download. http://www.adiumx.com/,

2008. (Accessed 3/8/2008).
[2] ALS Project. Adaptive Learning Spaces Projetcts.

http://www.als-project.org/, 2008. (Accessed 3/8/2008).

[3] Amelung, C. Using Social Context and E-Learner Identity as a
Framework for an E-Learning Notification System. International
Journal on E-Learning 6, 4 (2007). pp. 501-517.

[4] Apple Computer Inc. Apple - Mac OS X Leopard - iChat.
http://www.apple.com/macosx/features/ichat/, 2008.
(Accessed 20/10/2008).

[5] A p p l e Computer Inc. Q u i c k t i m e f o r J a v a .
http://developer.apple.com/quicktime/qtjava/ , 2008.
(Accessed 23/07/2008).

[6] Bates, A.W.T. Technology, E-Learning and Distance Education.
Routledge, London, Great Britain, 2005.

[7] Begole, J.B., Matsakis, N.E. and Tang, J.C. Lilsys: Sensing
Unavailability. In Proceedings of the 2004 ACM Conference on
Computer-Supported Cooperative Work - CSCW 2004 (Nov. 6-10,
Chicago, Illinois, USA). ACM Press, 2004. pp. 511 - 514.

[8] Birnholtz, J.P., Gutwin, C., Ramos, G. and Watson, M.
OpenMessenger: Gradual Initiation of Interaction for Distributed
Workgroups. In Proceedings of the Conference on Human
Factors in Computing Systems - CHI 2008 (Apr. 5-10, Florence,
Italy). ACM, N.Y., 2008. pp. 1661-1664.

[9] Brekeke Software Inc. Brekeke SIP Server - SIP Proxy,
Registrar Server. http://www.brekeke.com/sip/, 2008.
(Accessed 23/07/2008).

[10] C e r u l e a n Studios. Main Page - TrillWiki.
http://developer.ceruleanstudios.com/index.php/Main_
Page, 2008. (Accessed 3/8/2008).

[11] Donath, J. and Viegas, F. The Chat Circles Series: Explorations in
Designing Abstract Graphical Communication Interfaces. In
Proceedings of the Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques - DIS 2002 (June
25-28, London, UK). ACM, N.Y., 2002. pp. 359-369.

[12] Dourish, P. and Bellotti, V. Awareness and Coordination in
Shared Workspaces. In Proceedings of the 1992 ACM
Conference on Computer-Supported Cooperative Work - CSCW
1992 (Oct. 31 - Nov. 4, Toronto, Ontario, Canada). ACM Press,
1992. pp. 107-114.

[13] Dourish, P. and Bly, S. Portholes: Supporting Awareness in a
Distributed Work Group. In Proceedings of the Conference on
Human Factors in Computing Systems - CHI 1992 (May 3-7,
Monterey, California, USA). ACM Press, 1992. pp. 541-547.

[14] Gonzalez, V. and Mark, G. Managing Currents of Work: Multi-
Tasking Among Multiple Collaborations. In Proceedings of the
Nineth European Conference on Computer-Supported
Cooperative Work - ECSCW 2005 (Sept. 18-22, Paris, France).
Springer-Verlag, Heidelberg, 2005. pp. 143-162.

[15] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-
Oriented Platform for Developing Sensor-Based Infrastructures.
International Journal of Internet Protocol Technology (IJIPT) 1, 3
(2006). pp. 159-167.

[16] Gross, T. and Oemig, C. From PRIMI to PRIMIFaces: Technical
Concepts for Selective Information Disclosure. In Proceedings of
the 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications - SEAA 2006 (Aug. 29-Sept. 1, Cavtat,
Dubrovnik, Croatia). IEEE Computer Society Press, Los Alamitos,
CA, 2006. pp. 480-487.

[17] Gross, T., Stary, C. and Totter, A. User-Centered Awareness in
Computer- Supported Cooperative Work-Systems: Structured
Embedding of Findings from Social Sciences. International
Journal of Human-Computer Interaction 18, 3 (June 2005). pp.
323-360.

[18] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen,
H.F., Karmarkar, A. and Lafon, Y. Simple Object Access
Protocol (SOAP). W3C, http://www.w3.org/TR/SOAP/,
2008. (Accessed 3/8/2008).

[19] Gutwin, C., Stark, G. and Greenberg, S. Support for Workspace
Awareness in Educational Groupware. In Proceedings of the

Conference on Computer Supported Collaborative Learning -
CSCL 1995 (Oct. 17-20, Bloomington, IN). Lawrence Erlbaum
Associates, 1995. pp. 147-156.

[20] Hudson, S.E. and Smith, I. Techniques for Addressing
Fundamental Privacy and Disruption Tradeoffs in Awareness
Support Systems. In Proceedings of the ACM 1996 Conference on
Computer-Supported Cooperative Work - CSCW'96 (Nov. 16-20,
Boston, MA). ACM, N.Y., 1996. pp. 248-257.

[21] IBM. IBM Software - IBM Lotus Sametime. http://www-306.
ibm.com/software/lotus/sametime/, 2008. (Accessed
3/8/2008).

[22] ICQ Inc. ICQ.com - Community, People Search, and Messaging
Service! http://www.icq.com/, 2008. (Accessed 3/8/2008).

[23] Ignite Realtime. Openfire Server. Jive Software Community,
http://www.igniterealtime.org/projects/openfire, 2008.
(Accessed 23/07/2008).

[24] Ignite Realtime. Smack API. Jive Software Community,
http://www.igniterealtime.org/projects/smack/, 2008.
(Accessed 23/07/2008).

[25] Iqbal, S. and Bailey, B.P. Leveraging Characteristics of Task
Structure to Predict the Cost of Interruption. In Proceedings of the
Conference on Human Factors in Computing Systems - CHI 2006
(Apr. 22-27, Montreal, Canada). ACM, N.Y., 2006. pp. 741-750.

[26] Lancaster University. Agora. The Online Meeting Tool.
http://agora.lancs.ac.uk/, 2008. (Accessed 29/07/2008).

[27] Miranda IM. Miranda IM - Home of the Miranda IM Client.
Smaller, Faster, Easier. http://www.miranda-im.org/, 2008.
(Accessed 3/8/2008).

[28] Moodle. Moodle - A Free, Open Source Course Management
System for Online Learning. http://moodle.org/, 2008.
(Accessed 29/07/2008).

[29] Nardi, B.A., Whittaker, S. and Bradner, E. Interaction and
Outeraction: Instant Messaging in Action. In Proceedings of the
2000 ACM Conference on Computer-Supported Cooperative
Work - CSCW 2000 (Dec. 6-10, Philadelphia, USA). ACM Press,
2000. pp. 79 - 88.

[30] Ranganathan, M. and O'Doherty, P. JAIN-SIP: Java API for SIP
Signaling. https://jain-sip.dev.java.net/, 2007. (Accessed
23/07/2008).

[31] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and Schooler, E. SIP:
Session Initiation Protocol (RFC 3261). http://www.ietf.org/
rfc/rfc3261.txt, 2002. (Accessed 23/7/2008).

[32] Saint-Andre, P. Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence (RFC 3921).
http://www.ietf.org/rfc/rfc3921.txt , 2004. (Accessed
23/7/2008).

[33] Sakai Foundation. Sakai: Collaboration and Learning Environment
for Education. http://sakaiproject.org/, 2008. (Accessed
29/07/2008).

[34] Schulzrinne, H., Casner, S.L., Frederick, R. and Jacobsen, V.
RTP: A Transport Protocol for Real-Time Applications (RFC
3550). The Internet Society, ht tp: / /www.ietf .org/rfc/
rfc3550.txt, 2003. (Accessed 23/07/2008).

[35] Skype. Make the most of Skype - Free Internet Calls and Cheap
Calls. http://www.skype.com/, 2008. (Accessed 20/10/2008).

[36] Stahl, G. Group Cognition: Computer Support for Collaborative
Knowledge Building. MIT Press, Cambridge, MA, 2006.

[37] SUN Microsystems Inc. Java Media Framework API (JMF).
http://java.sun.com/javase/technologies/desktop/media
/jmf/, 2008. (Accessed 23/07/2008).

[38] Winer, D. XML-RPC Specification. UserLand Software,
http://www.xmlrpc.com/spec, 1999. (Accessed 10/07/2007).

