
Advanced Publish and Subscribe for Distributed Sensor-Based Infrastructures:
The CoLocScribe Cooperative Media Space

Tom Gross, Christoph Beckmann
Faculty of Media

Bauhaus-University Weimar
99423 Weimar, Germany

<firstname.lastname>(at)medien.uni-weimar.de

A b s t r a c t—Sensor-based in fras truc tures are
important base technology for cooperative media
spaces that support the natural interaction o f
users with their physical environment and w i t h
other users beyond the traditional keyboard and
mouse. Sensor-based infrastructures basically
capture data from sensors, store and p r o c e s s
these data, and provide the data to c l i e n t s .
Several infrastructures have been developed;
they all have their speci f ic strengths i n
supporting either publish or subscribe, push o r
pull. In this paper we present a generic and
advanced concept and implementation of a
publish and subscribe mechanism for distributed
sensor-based infrastructures that is s o p h i s t i c a t e d
yet easy to configure and that is resource-sav ing
through load balancing and provides push and
pull. We exemplify this publish and subscr ibe
mechanism in the CoLocScribe use case where w e
designed and developed advanced publish and
subscribe for a cooperative media space.

K e yw o r d s—Distributed System; Sensor-Based
Infrastructures; Cooperative Media Space.

I. INTRODUCTION
Sensor-based infrastructures [9] are an important base

technology for ubiquitous environments that support the
natural interaction of users with their physical
environment beyond the traditional keyboard and mouse
[1, 26]. Distributed sensor-based infrastructures for
ubiquitous environments in cooperative media spaces
support the social interaction among co-located groups of
users as well as between different co-located groups [12].
All these sensor-based infrastructures are basically
composed of three building blocks: sensors that capture
information from the real world and from the electronic
world, processing units that store and infer on the captured
data, and actuators that push changes and adaptations to
the environment based on the inferencing results [8].

Several sensor-based infrastructures have been
developed (e.g., Sens-ation [9], Khronika [17], Elvin [6],
Siena [4]). Their functionality can be characterised on two
dimensions: publish (i.e., provision of data to interested
parties) and subscribe (i.e., registration of interests in
data); as well as pull (i.e., manual queries of clients) vs.
push (i.e., automatic delivery of sensor data to clients).
None of them support both dimensions completely.

In this paper we present the concept and
implementation of the Pub/Sub advanced publish and
subscribe concept for distributed sensor-based
infrastructures that is sophisticated yet easy to configure
and that is resource-saving through load-balancing and
provides push and pull. In the next section we introduce
the generic concepts of Pub/Sub for publish and subscribe
and their evolving adaptations. We then report on the
CoLocScribe use case, where we developed a cooperative
media space based on the Pub/Sub concepts and did an
empirical study to evaluate both the generic concepts and
the specific system. We provide details on the
implementation of Pub/Sub and CoLocScribe. We sketch
related work. And, finally, we draw conclusions and glance
at future work.

II. PUB/SUB CONCEPT
The Pub/Sub concept provides an advanced publish

and subscribe mechanism to provide scalable adaptive
publishing of information to interested subscribers.
Publish is the process of making sensor data that is
captured in a specific context (e.g., the temperature
measured in an office, the online state in an instant
messaging client) public and delivering these sensor data.
Subscribe means the process of expressing interests in
certain sensor data and getting notified according to these
interests (e.g., a warning when the temperature in a
remote room goes above 35 degrees Celsius). Figure 1
depicts the basic concept of technological support for
publish and subscribe; the details are explained in the sub-
sections below.

Figure 1. The publish and subscribe concept (dashed arrows are
control flow; solid arrows are actual information flow).

A. Publish of Pub/Sub
The publish concept provides mechanisms for

selective sharing of sensor data. It supports users with
powerful, yet easy to use support to add new sensors, to
specify preferences for disclosing captured sensor data, and
to actually share these data. Sensors can be hardware that
is typically small sensing devices capable of measuring a
series of values in the real world (e.g., temperature,
movement), or software that is mainly capturing data from
local or remote computers (e.g., online calendar
information, program-switching behaviour). Besides the
base technology for sensors and networking, the
configuration of publications is a two-step process
registering new sensors, and activating registered sensors.

Registering new sensors in the publisher configuration
is done by inserting a short sensor description into a
publish configuration file—the PubConf file—in
eXtensible Markup Language (XML) format. Sensor
descriptions include general data about the sensor, and an
arbitrary number of collecting variants of the sensor’s data
capturing behaviour representing different levels of
granularity of sensor data to be shared. The following
lines we show an example of a PubConf file:

<?xml version="1.0" encoding="UTF-8"?>
<AvailableSensors>
 <Sensor name="Apple Mail" type="Other"
subtype="applescript" fields="none" >
 <Variant privacyType="public"
path="./scpt/AppleMail/newMailsCountXML.scpt">
Unread email count
 </Variant>
 <Variant privacyType="private"
path="./scpt/AppleMail/newMailsDetailXML.scpt"
>New email with name of sender and subject
 </Variant>
 </Sensor>
 <Sensor name="iCal" type="Other"
subtype="applescript" fields="none" >
 <Variant privacyType="public"
path="./scpt/iCal/getEventsCountXML.scpt">Cale
ndar events count
 </Variant>
 <Variant privacyType="private"
path="./scpt/iCal/getEventsDetailXML.scpt">Cal
endar events in detail
 </Variant>
 </Sensor>
</AvailableSensors>

Activating registered sensors is done by selecting the
sensor and the level of granularity from a list of available
sensors and levels: the system parses the PubConf file and
knows all publisher configurations with sensors and their
collecting variants, and allows to select sensors and one
specific collecting variant for each sensor. The selected
sensors and collecting variants are then sent to the broker
where they are activated, and the capturing and
transmission of the respective sensor data starts to run in a
background process.

B. Subscribe of Pub/Sub
The subscribe concept provides mechanisms for

specifying interests in and receiving sensor data from the
infrastructure. It aims to support subscribers expressing a
specific interest in sensor data and specifying the
preferences for the notification, as well as to provide
mechanisms for the actual parsing and matching of data
and notifications about matches found. Subsequently we
describe the specification, the matching, and the
notification.

Specifying interests allows a subscriber to place
subscriptions containing simple or advanced expressions
that represent the selection of sensor data they want to be
notified about: Simple expressions represent exact values
in the fo rmat o f f i e lds and values
<SensorDataFieldName>: <SensorDataFieldValue> (e.g.,
SensorName: “iCal” and SensorValue: “Project
CoLocScribe Meeting” matches all calendar entries related
to meetings of the CoLocScribe project). Advanced
expressions represent ranges of sensor data and have the
following general format <SensorDataFieldName>:
{<LowerBound>|<Asterisk>}{<UpperBound>|<Asterisk>}
(e.g., SensorName: “B11.Temperature” and SensorValue:
“50;*” matches all room temperatures greater then 50
degrees Celsius, which could be used for a fire alarm
notification). In Table 1 we illustrate the four possible
permutations of upper and lower bounds with some
examples.

Description Syntax Example
Inside: a closed
interval of
interest

<LowerBound>;
<UpperBound>

“23:26.5” for
temperatures
greater than or
equal to 23ºC,
but less than or
equal to 26.5ºC

Outside: interest
in all values,
except for a
specific closed
interval

<UpperBound>;
<LowerBound>

“400;240” for
movement
levels lower
than 240 and
higher than 400

Less than: an
upper limit of
interest

<Asterisk>;
<UpperBound>

“*;35” for
temperatures
less than or
equal to 35ºC

Greater than: a
lower limit of
interest

<LowerBound>;
<Asterisk>

“12;*” for
temperatures
greater than or
equal to 12ºC

Table 1. Subscription expressions.

The subscription also contains further information:
The subscription period is the start and end dates between
which the parsing and matching of data takes place. The
notification type specifies how the information is
presented, which can either be of type thin notification
(only the fact that a match was made is communicated) or

of type fat notification (the matching sensor data is
communicated). The notification interval is the rhythm
between notifications that can be 0 meaning that the
notification is sent immediately after the match, or any
value expressed in seconds, minutes, hours, days, or
weeks (e.g., 1h means that the notification is always
presented at the exactly same time of the hour).

Matching subscriptions to publications is comparing
the names and the values of all individual fields of each
sensor data that is captured with the names and the values
of all individual fields of the specifications of interest in
the subscriptions. It is important to note that in the
Pub/Sub concept on the publishers’ side only the sensor
data are captured, stored, and free for comparison that are
part of the publications; and on the subscribers’ side only
the sensor data that matches is considered and the
unmatched data are ignored.

All sensor data have a standardised schema including
mandatory fields such as Sensor Type, Sensor Value,
Occurrence Date, Occurrence Time, and Location; optional
fields such as User List, Urgency, Sampling, Frequency,
Granularity, Ingredients, and Relationship; as well as
custom fields that can be any key-value pairs that might
be needed. Therefore, the comparison between the names
and the values of the fields of the published data and the
subscribed data is straightforward.

This matching concept allows load balancing between
clients and servers, since the clients only receive filtered
and pre-processed events. This is particularly valuable for
thin clients in complex ubiquitous environments, where
typically a broad range of sensors captures vast amounts
of data that can hardly be handle by the thin clients.

Notifying subscribers happens when the comparison
described above is successful and finds a match. Then a
notification is sent to the subscriber according to its
preferred notification type. It is also checked if the
notification interval and sends notification with the
preferred timing. The subscriber can then program any
actuator to react on the notification such as starting a
presentation of data, or triggering actions in a database.

C. Adaptable Publish and Subscribe
The above-described concepts for publish and subscribe

in Pub/Sub provide both publishers and subscribers with
powerful mechanisms to share and receive mutual
information. They also facilitate the easy configuration
and reconfiguration of publication and subscription
preferences over time. This is particularly important in
settings where the needs and requirements for publishing
and subscribing change frequently (e.g., media spaces and
ubiquitous environments).

The concept allows the fast and straightforward
configuration of sensors as information sources. Besides
the creation of new sensors, the publisher is capable of
activating and deactivating information source
immediately. Subscribers can subscribe to information
they are interested in, such as certain data of a sensor
without knowing the infrastructure deeply in form of
sensors identification numbers.

III. THE COLOCSCRIBE USE CASE
In this CoLocScribe use case we exemplify how these

flexible and adaptable concepts are applied to a media
space and ubiquitous environment. In CoLocScribe we
used the Pub/Sub concept, and developed a distributed
sensor-based infrastructure on top of it that can then be
deployed with real users to learn about its usefulness and
usability and to get inspiration for further developments.

The CoLocScribe cooperative media space supports
the Co-presence of users at the same or remote Locations
that is based on a publish and subScribe concept in order
to provide users with mutual awareness information. This
mutual awareness information provides an important basis
for users to have a shared frame of orientation in the team
and to therefore work more effectively and efficiently
together, independent of their location [13, 14]. The
awareness information is captured with sensors, mediated
by a distributed sensor-based infrastructure enhanced with
Pub/Sub concepts, and presented on large public displays.

The support for awareness information faces several
conceptual challenges—one is specifically the dual trade-
off between on the one hand the need for information, and
on the other hand the wish for privacy as well as for little
disruption [15]. Concepts for selective information
disclosure, where users can specify the information they
want to share and the recipients of the information try to
address this dual trade-off (e.g., [11, 16, 20]). With the
CoLocScribe use case we wanted to get input for new
concepts of selective information disclosure based on
publish and subscribe.

A. CoLocScribe Setup
The CoLocScribe cooperative media space was

deployed at our laboratory in two remote sites, where
sensors captured the information from either room, and
where the mutual information was presented on large
public displays in either room [18]. A permanent video
link supported additional mutual visual awareness.

The CoLocScribe cooperative media space consists of
specific hardware at each si te . On each site a 37”
widescreen monitor is mount on a free wall, so it can be
viewed from each student’s desk. A camera is mounted
close to the public display in order to cover a wide area of
each site. Both, the monitor and the camera, are connected
to a Mac mini computer.

The CoLocScribe cooperative media space provides
two software applications at each site. The PubClient of
the CoLocScribe is the software application that runs on
all workstations of the users. It enables users to disclose
information. As a publishing default setting for the user
study, users can disclose four types of sensors at three
different levels of detail. Table 2 summarises the sensors
and levels of granularity used in the CoLocScribe use
case.

The SubClient of the CoLocScribe is the software
application shown on the widescreen monitor. It presents
a video stream for looking into the distant site and a
smaller one as control view of the appearance of the local

site. It also shows the actually gathered awareness
information and a floor plan of the remote site. The
windows can be freely arranged.

The overall configuration of the CoLocScribe
cooperative media space supports reciprocity of awareness
information, where on either site the same information is
presented on the widescreen monitor. Furthermore, the
information that is presented is coupled to present
persons—that is, if a person leaves a site, her information
is not displayed any longer.

Sensor Low Medium High
BSCW:
updates in
the shared
workspace

No infor-
mation
about
workspace

Count of
recent
changes in
workspace

Detailed in-
formation
about changes
in directories
and files (incl.
owner,
modification
time)

Calendar:
calendar
appoint-
ments

No calen-
dar ap-
point-
ments

Count of
appoint-
ments for
current and
next day

Concrete ap-
pointments
(incl. start and
end dates,
location)

Email:
unread
email

No infor-
mation
about un-
read email

Count of
unread
email in
inbox

Detailed in-
formation
(incl. sender
name, sub-
ject, date re-
ceived)

Music:
music
playing
informa-
tion

No infor-
mation
about cur-
rently
listened
music

Playing
state of
music
player
(‘playing’,
‘paused’,
‘stopped’)

Playing state
(incl. artist
name, song
title)

Table 2. CoLocScribe sensors and granularity.

B. CoLocScribe User Study
The user study we conducted with the CoLocScribe

media space was a pre-study to obtain information of how
adaptation to co-present others is done and which factors
are important for adapting the publication and
subscriptions of awareness information in a co-present
media space.

For this pre-study nine participant used the
CoLocScribe media space over one week to cooperate on
their student projects. Their age was between 23 and 31
years and they were studying for at least three years. There
were eight students working in four student projects with
two participants each, and one additional student writing
on a bachelor’s thesis. The rooms in which they worked
were located in two buildings in the same city. While the
participants worked in their rooms and with the media
space, three different work situations could be identified:

project work means they are working on artefacts (e.g.,
source code or documents); presentation preparation means
they were preparing for the weekly project meeting (where
the presentations were stored in a shared workspace
system), and project meeting means they presented their
work to supervisors.

After the use period we conducted a comprehensive
qualitative interview study as described in [21]. We used
an interview guide containing 51 questions in five
sections as a flexible methodical technique for making the
participants talk.

C. CoLocScribe Study Results
All interviews were recorded, transcribed, and analysed.

All participants expressed that they used the CoLocScribe
cooperative media space intensely for communication and
awareness, and felt less distance during the use.

The publishing—that is, the information
disclosure—of the users followed patterns. Typically,
disclosure was configured at the beginning and included
the relation of trust towards all present group members.
Later, the users only seldom reacted to changing co-
presence among the group members (e.g., activated or
deactivated different levels of granularity). So, the co-
presence of other student group members had low
influence. However, the participants reported that the
presence of superiors had medium influence on their
information disclosure configuration (e.g., they adapted
their configuration before the weekly project meeting
when the superiors visited the site through lowering the
level of granularity of disclosed information).

Besides the reaction to the changed presence in the
media space there was also another factor of influence:
Two users reported that they adapted their configuration in
reaction to the publication behaviour of other peers. For
instance, some users received additional calendar
information (i.e., the other user changed the collecting
variant of the calendar appointment sensor from medium
to high) and immediately reacted by also publishing more
information (i.e., they also adapted the collecting variant
of the calendar appointment sensor from medium to high).

Despite the fact that overall the publishing was
changed infrequently, the PubClient was perceived as fast
and easy. This includes the manual adaptation of the levels
of granularity such as in the case another person entered.

So, these results provides three important lessons for
the CoLocScribe cooperative media space specifically, but
also for the Pub/Sub concept in general: The CoLocScribe
cooperative media space was well received and users were
satisfied with it—despite some initial sceptic thoughts on
privacy. So, publish and subscribe concepts as in
Pub/Sub are needed. The adaptation of the publishing took
place, although not as frequently as expected. So,
publishing concepts need to be easy and flexible in their
configuration and reconfiguration over time. The
adaptations can have subtle reasons, which are not always
immediately obvious. So, concepts for automatic
adaptations of publish and subscribe need to be developed
with care.

IV. IMPLEMENTATION
In this section we provide details on the software
architectures of the Pub/Sub infrastructure and the
CoLocScribe cooperative media space.

A. Pub/Sub Software Architecture
The publish and subscribe mechanism of Pub/Sub is

implemented as the PubClient for publishing sensor data
from sensors, the PubSubServer for making the matches
between the publications and the subscriptions and the
corresponding notifications, and the SubClient for
subscribing to sensor data and receiving notification.
Figure 2 shows the architectural overview, which is
described in the subsequent sections. All software
applications are implemented in Java (Java 2 Platform,
Standard Edition 1.5.0_13) [23].

PubClient
The PubClient application configures sensors, gathers

sensor data, and transmits these data to PubSubServer via
XML Remote Procedure Call (XML-RPC). It consists of
three subsystems. The PCGUI subsystem provides a GUI
with a main window showing the active sensors, and
offering buttons for activating and deactivating sensors,
and for editing their collecting variant. The PCSensors
subsystem implements two sensor handlers. The
PCAppleScriptHandler invokes external software sensors
implemented in AppleScript that capture data from
applications on a Macintosh computer, and it retrieves the
captured data from the external software sensors. The
PCJavaHandler invokes external software sensors

implemented in Java that capture data from applications
via Java calls, and it retrieves the captured data from the
external software sensors. Each sensor handler provides
tasks for querying sensors at a predefined frequency. The
tasks are running in different non-influencing threads and
can be started, stopped, and cancelled independently. The
PCPubManager gets the captured sensor data from the
sensor handlers of the PCSensors and forwards these data
to the PubSubServer via XML-RPC. Due to the flexible
push-paradigm it only transmits sensor data with changes.
No sensor data is generated and sent to PubSubServer, if
the sensor’s state remains the same.

PubSubServer
The PubSubServer is responsible for receiving sensor

data, matching them to subscriptions, and delivering
notifications. It consists of several subsystems.

The PubSubManager is the most important subsystem
of the PubSubServer—it stores subscriptions including
notification preferences, matches incoming sensor data to
subscriptions, and provides notifications of matching
sensor data according to the notification preferences. The
PubSubManger communicates with the SubClient via
Java Remote Method Invocation (RMI) [24]. RMI allows
easy pushing of notifications from the PubSubManager to
the SubClient. The PubSubManager has three
subsystems.

The SubscriptionHandler holds a HashSet of the
subscriber stubs and provides the attach() and detach()
methods that allow subscribers to connect or disconnect to
the PubSubServer. Additionally, it holds a database of the
subscriber stubs in order to store them persistently beyond

Figure 2. The architecture of the Pub/Sub infrastructure.

the shutdown of the PubSubServer. Furthermore, it holds
a HashTable with information on subscribers with
delayed notification preferences preference (i.e., a
notification interval greater than 0).

When subscribers attach to the PubSubServer, the
SubscriptionHandler saves the complete subscriber stub to
the database; it adds the subscriber stub to the HashSet;
and it adds a subscriber task for subscribers with delayed
notifications to the HashTable.

The detach process of subscribers follows a similar
pattern. First, the HashTable is checked for subscriber
tasks of the detaching subscriber. The tasks found are
cancelled and deleted from the HashTable by the
SubscriptionHandler. Second, the subscriber stub is
removed from the database. And, third, the subscriber stub
is removed from its internal HashSet. When a subscriber
cannot be contacted any longer, it gets detached
automatically.

The Matcher compares incoming sensor data to the
subscriptions of all subscribers. It takes the subscribers’
stub from the HashSet of the SubscriptionHandler and
compares all its subscriptions with the sensor data in a
series of string comparisons. When matches are found, the
Matcher checks the notification preferences. Real-time
notifications are sent immediately to the SubClients via
the Gateway; delayed notifications are sent to the
NotificationScheduler.

The N o t i f c a t i o n S c h e d u l e r receives delayed
notifications, and puts them into a queue, implemented as
a private fixed rate Timer object. This object stores the
time of execution of each subscriber task. When the time
of execution has come the Timer triggers the
corresponding tasks. The task autonomously checks if
they have sensor data, and notify the subscriber if sensor
data are available.

The remaining subsystems and components of the
PubSubServer are based on implementations of the Sens-
ation platform and have already been published [cf. 9].
Here we just mention them. The Adapter subsystem and
the SensorPort subsystem provide interfaces to publishers
based on multifarious sensors and protocols (e.g., SOAP,
XML-RPC, sockets). The Gateway subsystem provides
interfaces to subscribers and actuator Clients via
multifarious protocols (e.g., SOAP, XML-RPC, sockets).
The Persistence subsystem stores and caches sensor data.
The Inferencing subsystem provides algorithms for
processing and comparing the stored sensor data. Finally,
the Management subsystem administrates the overall
PubSubServer and supports the communication among its
subsystems and components.

SubClient
The SubCl ient application is responsible for

managing subscriptions and dealing with notifications of
matching subscriptions. The SCGUI component provides
a user interface for specifying subscriptions, and
presenting notifications. The S C S u b M a n a g e r is
responsible for transmitting the description of
subscriptions from the client to the PubSubServer. It

implements interfaces for the attach() and detach()
methods for subscribing and unsubscribing submissions
on the PubSubServer. The SCNotificationManager is
responsible for receiving notifications from the
PubSubServer and for triggering further action in the
actuators. It implements interfaces for the update() of
the two methods for receiving thin and fat notifications
respectively. As described above thin notification only
provide feedback about a match, and fat notifications
provide feedback about the matching sensor data.

B. CoLocScribe Software Architecture
The CoLocScribe media space—as described

above—uses the Pub/Sub concept for awareness
information disclosure and presentation facilitating
smooth social interaction in and between two student sites
of the CML. Accordingly, the hardware and software is
distributed between the two sites. All software
applications are implemented in Java (Java 2 Platform,
Standard Edition 1.5.0_13) [23].

The Workstations with the CLSPubClients are the
computers used by the students as work machines and that
are extended for publishing and sensing. In the
CoLocScribe setting we equipped six computers with
standard hardware such as keyboard, mouse, and monitor
on either site (CML-B11, and CML-HS7) with the
CLSPubClients. The users configure their information
disclosure by using the CLSPubClient client application
for publishing captured information. Four different sensors
capture remote and local information about the users. The
BSCWSensor is implemented in Java and captures remote
information from shared workspaces on the central BSCW
server via XML-RPC. The CalendarSensor, the
EmailSensor, and the MusicSensor are implemented in
AppleScript and capture local information about calendar
entries, unread email, and music played via the scripting
interface of Mac OS X.

The CLSPubSubServer stores and manages incoming
sensor data, stores and manages subscriptions, and delivers
notifications based on matching subscriptions (CML-
110). The central subsystems and components work as
explained in the implementation of the PubSubServer
described above.

The CLSPresenters with the CLSSubClients are the
nodes for capturing and presenting the video images, and
the subscription and presentation of the awareness
information on each site. Both are equally equipped with
the same standard hardware such as keyboard and mouse, a
widescreen monitor, and a camera. Each CLSSubClient
provides a GUI in the CLSGUI, In the GUI all windows
are displayed in a heads-up display (HUD) as known from
Mac OS X—that is, a semi-transparent lightweight black
window without a menu. These HUDs are advanced nested
interface components, which provide the advantage of
elegant updates upon arrival of new information. The
CLSManagers handle the connection to the cameras, and
deal with subscriptions. The subscriptions are handled as
already described in the implementation of the SubClient
above.

V. RELATED WORK
The work presented here touches different research

areas: sensor-based platforms, media spaces, and
investigations on information disclosure.

A. Sensor-Based Platforms
Sensor-based platforms rely on events that carry data

measured by sensors. They support the flexible and rapid
implementation of infrastructures that assemble sensors
within an environment.

Sens-ation [9] offers inferences engines to aggregate
sensor input and interfere complex abstractions on sensor
data. It filters and aggregates relevant sensor data. Inference
engines need to be implemented and integrated into the
platform for later use. The CollaborationBus editor on top
of Sens-ation provides concepts for content filtering of
sensor data [10]. It allows users to specify configurations
of filters at run-time. However, its event handling
produces huge amounts of data between the server and the
clients, because all data are transferred to the client.

Khronica [17] provides both a pull mechanism for
retrieving and browsing events, and a simple notification
service that is able to push notifications to interested
subscribers. Its publish and subscribe mechanism provides
information channels that allow users to define
subscription daemons for string matching. Compared to
the Pub/Sub concept, Khronica provides simple filters.

Elvin [6] is an event notification service that provides
quenching, which validates incoming event notifications
and routes the notification to subscribed clients. Elvin is
based on a thorough event model and sophisticated filters.
However, it only provides push notifications from the
server. NESSIE [22] is similar and also provides pull with
an onus on the client side, but it is based on a single
server instance whereas Sens-ation is distributed.

Siena [4] is also an event notification service, and is
implemented on the network layer. It provides an
advertise-language for the specification of interests. Due to
its architecture, Siena is limited to pull events directly.

The service-oriented paradigm of Sens-ation can be
found in other technologies such as the Services Gateway
Intitiative (OSGi) framework [25], and the Jini Network
Technology [19]. The OSGi framework provides publish
and subscribe mechanisms between its services called
bundles; it supports the easy integration and removal of
bundles. The Jini Network Technology also provides
light-weight integration of publish and subscribe services.
Sens-ation provides similar software concepts; however,
its main focus is on elegant and easy processing of user-
generated event data.

B. Media Spaces and Information Disclosure
We show media spaces that directly address awareness

and information disclosure. And we reflect on general
studies of information disclosure.

Bellotti and Sellen [2] present a framework on control
and feedback of information gathered in a media space
environment called Ravensoft Audio/Visual Environment

RAVE . Control means that people can decide what
information is disclosed about them. Feedback is a
concept to inform people when and what information is
gathered and whom the information is made accessible to.

Notification Collage [7] is a media space that supports
controlling confidentiality, which is the control over
information that is outgoing towards others [3]. It
provides a tool to configure the refresh rate of captured
images from the desktop camera in the range from near
live to once-per minute.

Studies in the field of information disclosure tried to
elucidate questions on conditions for voluntary sharing of
detailed information among people like in which situation
people are willing to share or whom they want to share
which information with.

A theoretical study as described in [20] on information
disclosure, which was conduced in two steps revealed 40
types of information and 19 types of people to which
information is disclosed differently. A second study aimed
at identifying how comfortable users feel to share the
previously gathered 40 types of information towards the
19 types of people. The clustered results show that the
information disclosure of the subjects had limited variants
with respect to the recipients of the information.

In a study [16], faces are suggested for distinct
information disclosure settings for specific situations and
audiences. They show that for the information disclosure
behaviour the respective recipients have a considerably
higher influence than that respective situation.

VI. CONCLUSIONS
In this paper we have motivated the need for powerful

publish and subscribe mechanisms supporting push and
pull as a basis for distributed sensor-based infrastructures.
We have presented the concept and implementation of
Pub/Sub as well as the CoLocScribe use case. And we
have introduced related work.

The current version of the Pub/Sub concept and
implementation allows users to specify preferences based
on captured sensor data. It does currently not provide
generic support for the specification of the format of the
results. A more generic solution on the publisher’s side
would reduce the overall effort of developers, since the
concept and implementation for the selection and
presentation of the matching sensor data only have to be
implemented once on the publisher’s side, rather than on
each individual subscriber’s side.

The Pub/Sub concept as implemented in the
CoLocScribe use case is perfectly scalable for the
CLSPubSubServer, the CLSPubClients, and the
CLSPresenters. We are currently evaluating the general
scalability of the Pub/Sub concept in Sens-ation for huge
amounts of events and developing novel concepts for
better scalability through publish and subscribe in Sens-
ation’s distributed peer-to-peer environment.

In the use case the CoLocScribe SubClient provides
simple representations of the data that match the
subscription request and that are presented on the public
screen. While this was sufficient for the use case, it would

be desirable to have more sophisticated and user-oriented
forms of data presentation. Existing work on informative
art can be used as a source of inspiration [5].

Finally, the adaptations in Pub/Sub and in
CoLocScribe are done manually. It would be interesting to
use machine learning techniques to train the system social
settings, and then have the system do automatic
adaptations by capturing the room situation and the
present users, by inferring and comparing to the data, and
by adapting the room in case a match could be found.

ACKNOWLEDGMENTS
We thank Thilo Paul-Stueve for support with the

Sens-ation platform, and Maximilian Schirmer for his
vital contributions to the concept and implementation of
the generic publish and subscribe mechanisms. Thanks to
the anonymous reviewers for valuable feedback.

REFERENCES
[1] Abowd, G.D. and Mynatt, E. Charting Past, Present, and Future

Research in Ubiquitous Computing. ACM Transactions on
Computer-Human Interaction 7, 1 (Sept. 2000). pp. 29-58.

[2] Bellotti, V. and Sellen, A. Design for Privacy in Ubiquitous
Computing Environments. In Proceedings of the Third European
Conference on Computer-Supported Cooperative Work -
ECSCW'93 (Sept. 13-17, Milan, Italy). Kluwer Academic
Publishers, Dortrecht, NL, 1993. pp. 77-92.

[3] Boyle, M. and Greenberg, S. The Language of Privacy: Learning
from Video Media Space Analysis and Design. ACM
Transactions on Computer-Human Interaction 12, 2 (June 2005).
pp. 328-370.

[4] Carzaniga, A., Rosenblum, D.S. and Wolf, A.L. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Transactions on Computer Systems 19, 3 (Aug. 2001). pp. 332-
383.

[5] Ferscha, A. A Matter of Taste. In Proceedings of the European
Conference on Ambient Intelligence - AmI 2007 (Nov. 7-10,
Darmstadt, Germany). Springer-Verlag, Heidelberg, 2007. pp.
287-304.

[6] Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps, T.
and Segall, B. Augmenting the Workaday World with Elvin. In
Proceedings of the Sixth European Conference on Computer-
Supported Cooperative Work - ECSCW'99 (Sept. 12-16,
Copenhagen, Denmark). Kluwer Academic Publishers,
Dortrecht, NL, 1999. pp. 431-450.

[7] Greenberg, S. and Rounding, M. The Notification Collage: Posting
Information to Public and Personal Displays. In Proceedings of
the Conference on Human Factors in Computing Systems - CHI
2001 (Mar. 31-Apr. 6, Seattle, WA). ACM, N.Y., 2001. pp. 514-
521.

[8] Gross, T. Cooperative Ambient Intelligence: Towards
Autonomous and Adaptive Cooperative Ubiquitous Environments.
International Journal of Autonomous and Adaptive
Communications Systems (IJAACS) 1, 2 (2008). pp. 270-278.

[9] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-
Oriented Platform for Developing Sensor-Based Infrastructures.
International Journal of Internet Protocol Technology (IJIPT) 1, 3
(2006). pp. 159-167.

[10] Gross, T. and Marquardt, N. CollaborationBus: An Editor for the
Easy Configuration of Ubiquitous Computing Environments. In
Proceedings of the Fifteenth Euromicro Conference on Parallel,
Distributed, and Network-Based Processing - PDP 2007 (Feb. 7-9,
Naples, Italy). IEEE Computer Society Press, Los Alamitos, CA,
2007. pp. 307-314.

[11] Gross, T. and Oemig, C. From PRIMI to PRIMIFaces: Technical
Concepts for Selective Information Disclosure. In Proceedings of
the 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications - SEAA 2006 (Aug. 29-Sept. 1,
Cavtat, Dubrovnik, Croatia). IEEE Computer Society Press, Los
Alamitos, CA, 2006. pp. 480-487.

[12] Gross, T., Paul-Stueve, T. and Palakarska, T. SensBution: A Rule-
Based Peer-to-Peer Approach for Sensor-Based Infrastructures.
In Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications - SEAA 2007
(Aug. 27-31, Luebeck, Germany). IEEE Computer Society Press,
Los Alamitos, CA, 2007. pp. 333-340.

[13] Gross, T. and Prinz, W. Modelling Shared Contexts in
Cooperative Environments: Concept, Implementation, and
Evaluation. Computer Supported Cooperative Work: The Journal
of Collaborative Computing 13, 3-4 (Aug. 2004). pp. 283-303.

[14] Gross, T., Stary, C. and Totter, A. User-Centered Awareness in
Computer-Supported Cooperative Work-Systems: Structured
Embedding of Findings from Social Sciences. International
Journal of Human-Computer Interaction 18, 3 (June 2005). pp.
323-360.

[15] Hudson, S.E. and Smith, I. Techniques for Addressing
Fundamental Privacy and Disruption Tradeoffs in Awareness
Support Systems. In Proceedings of the ACM 1996 Conference on
Computer-Supported Cooperative Work - CSCW'96 (Nov. 16-20,
Boston, MA). ACM, N.Y., 1996. pp. 248-257.

[16] Lederer, S., Mankoff, J. and Dey, A.K. Short Talk: Who Wants to
Know What When? Privacy Preference Determinants in
Ubiquitous Computing. In Extended Abstracts of the Conference
on Human Factors in Computing Systems - CHI 2003 (Apr. 5-10,
Fort Lauderdale, Florida). ACM, N.Y., 2003. pp. 724-725.

[17] Loevstrand, L. Being Selectively Aware with the Khronika
System. In Proceedings of the Second European Conference on
Computer-Supported Cooperative Work - ECSCW'91 (Sept. 24-
27, Amsterdam, NL). Kluwer Academic Publishers, Dortrecht,
NL, 1991. pp. 265-278.

[18] Lynch, K.J., Snyder, J.M., Vogel, D.M. and McHenry, W.K. The
Arizona Analyst Information System: Supporting Collaborative
Research on International Technological Trends. In Gibbs, S. and
Verrijn-Stuart, A.A., eds. Multi-User Interfaces and Applications.
Elsevier, Amsterdam, NL, 1990. pp. 159-174.

[19] Microsystems Inc., S. Jini Network Technology.
http://www.sun.com/software/jini, 2008. (Accessed 24/10/2008).

[20] Olson, J.S., Grudin, J. and Horvitz, E. Late Breaking Result: A
Study of Preferences for Sharing and Privacy. In Extended
Abstracts of the Conference on Human Factors in Computing
Systems - CHI 2005 (Apr. 2-7, Portland, OR). ACM, N.Y., 2005.
pp. 1958-1988.

[21] Patten, M.Q. Qualitative Research and Evaluation Methods. Sage
Publications Inc., Thousand Oaks, CA, 2002.

[22] Prinz, W. NESSIE: An Awareness Environment for Cooperative
Settings. In Proceedings of the Sixth European Conference on
Computer-Supported Cooperative Work - ECSCW'99 (Sept. 12-
16, Copenhagen, Denmark). Kluwer Academic Publishers,
Dortrecht, NL, 1999. pp. 391-410.

[23] Sun Microsystems, I. J2SE 5.0. http://java.sun.com/j2se/1.5.0/,
2007. (Accessed 31/7/2008).

[24] Sun Microsystems, I. Java Remote Method Invocation.
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper
/, 2008. (Accessed 11/7/2008).

[25] Tavares, A.L.C. and Valtente, M.T. A Gentle Introduction to
OSGi. ACM SIGSOFT Software Engineering Notes 33, 5 (Sept.
2008). pp. 1-5.

[26] Weiser, M. The Computer of the 21st Century. Scientific
American 265, 9 (Sept. 1991). pp. 94-104.

