
The PPPSpace: Innovative Concepts for Permanent Capturing,
Persistent Storing, and Parallel Processing and Distributing Events

Tom Gross, Christoph Beckmann, Maximilian Schirmer
Faculty of Media

Bauhaus-University Weimar
99423 Weimar, Germany

<firstname.lastname>(at)medien.uni-weimar.de

A b s t r a c t—Media spaces provide users w i t h
flexible support for easy interaction w i t h
technology and with each other, both at the s a m e
place and over distance. From a t e c h n o l o g i c a l
p e r s p e c t i v e t h e d e v e l o p m e n t o f t h e s e
environments is often inefficient, since m o s t
e n v i r o n m e n t s a r e d e v e l o p e d s p e c i f i c a l l y ,
without any synergies or reuse of p r e v i o u s
concepts and implementations. In this paper w e
present the cooperative media space PPPSpace
that is based on powerful technical parallel and
distributed software engineering concepts and at
the same time easy to use for end-users.

K e y w o r d s — D i s t r i b u t e d S y s t e m ; E v e n t
Notification Infrastructure; Media Space; End-
User Configuration.

I. INTRODUCTION
Media spaces are cooperative ubiquitous environments

that provide convenient connections of rooms and their
users. They typically support permanent audio and video
connections between two physical rooms, where users can
have easy background information on who is around in
either room and can flexibly start conversations with
present and remote colleagues. In general, media spaces
aim to bridge distance by providing connections that are
permanently available and do not require users to make
any configurations of connections or call their remote
colleagues. They can simply see and hear who is around at
the other site. Accordingly, ‘in a media space, people can
create real-time visual and acoustic environments that span
physically separate areas’ [3, p. 30].

When users are working in such a distributed
environment, they do not only require audio and video
connections with remote rooms and other users, but also
background information on the cooperative activities of all
users. This background information is particularly
important if the distributed users want to go beyond pure
presence and communication and really cooperate with
each other on a shared task or project. Such awareness
information provides a basis for shared orientation in
teams and for effective and efficient team work [12].

Sensor-based event notification infrastructures offer
technologically advanced concepts for the realisation of
awareness information distribution. They provide support
for capturing data, processing data, and presenting data to
local and remote users who are interested in the respective
data and have adequate access rights to the data [9, 11].

Since the capturing and presenting of data entails
challenges for users’ privacy and disruption [14], end-users
need to be able to configure their environment, including
individual preferences for disclosing personal information,
as well as preferences for the adequate presentation of
information within the media space environment. Only if
the users are provided with both a complex and
sophisticated event notification infrastructure underneath,
and an easy editor for configuring their environment with
respect to the information they want to be captured about
them, and with respect to the information they want to be
presented in their environment.

Existing event notification infrastructures mostly do
not enable end-users to configure their media space
environment according to their needs and therefore leave
this task to experts like programmers or administrators.

In this paper, we present the PPPSpace (Permanent,
Persistent, and Parallel Space) as a technologically
powerful sharing environment for connecting rooms and
users. The environment is based on permanent audio and
video channels as well as event notifications for awareness
information that result from various sensors. Notifications
are presented on special PPPSpace nodes and mobile
clients as well as on workstation computers. With a
lightweight editor, the PPPSpace enables end-users to
configure their environment. So, end-users can discover,
manage, manipulate, and configure components of the
media space environment, and construct and explore their
personal scenarios.

In the next section we introduce the concepts of
PPPSpace for permanent capturing, persistent storing, and
parallel processing and distributing of data in a media
space environment. We then report on the implementation
of PPPSpace, and we outline a performance evaluation of
the environment. We sketch related work. Finally, we
draw conclusions, and glance at future work.

II. THE PPPSPACE CONCEPT
The PPPSpace concept provides mechanisms for the

Permanent capturing by sensors in the environment, for
Persistent storing of awareness data, and for Parallel
processing and distributing of data to clients that registered
for notifications on these sensors.

In PPPSpace data is captured with the help of clients
that provide sensors for all available data sources. The data
is processed and distributed with a sensor-based event
notification infrastructure. The processing within the
server is based on inference engines that allow to filter
data or apply heuristics on data and that can be integrated
in any stage of the processing chain between the gathering

and the presenting of data. Data is presented with actuators
in the clients; actuators display data or provide changes to
the environments that serve as subtle notifications.

End-users can make configurations based on chains of
sensors, inference engines, and actuators. With an easy-to-
use editor users can produce dynamic configurations of
environments with sensors (for end-users called data
sources), with inference engines (for end-users called
filters), and with actuators (for end-users called actuators).

In this section, we subsequently describe the
mentioned concepts and mechanisms in detail.

A. Permanent Capturing of Data
The permanent capturing concept provides

mechanisms for sensors that constantly gather data from
the environment and forward changes in the environment
to the server. The captured data contributes to a rich
collection of sensed data, which helps to infer higher-order
data on activities in the environment.

A variety of sensors capture data from electronic
sources (cf. Table 1). We have also developed adaptors for
integrating external sensors that capture data from physical
sources, but these are not used in the current scenario.
Each sensor has four distinct collecting variants specifying
levels of granularity of sensor data to be captured. They
provide users a means to decide how many details on
personal information should be captured and stored. The
collecting variants are:

• Precise: complete and exact data
• Approximate: selected and exact data
• Vague: selected and rounded data
• Undisclosed: no data
The latter implies that from a specific sensor no data

at all are captured, and the user has complete privacy.
Please note that the granularity of the captured data is
always dependent on the capabilities of the respective
sensor. For the sensors used in our environment this
implies that data on the users (first six entries in Table 1)
are captured on the users’ computers as excerpt of users’
communication and work data as well as on the users’
mobile phone as GPS data (seventh entry in Table 1); and
data on the environment (latter two entries in Table 1) are
captured as raw data streams.

Sensors [1,*]
Name Description

Mail Data on unread email messages in email
application

Calendar Data on current day’s events in calendar
application

Shared
work-
space

Data on recently changed documents in
the shared workspace

Music Data on songs that are currently played on
respective user’s workstation computer

Notes Data on notes created on a workstation
computer

Social
network

Data on recently published personal states
in an social networking Web application

GPS Data on respective user’s current position
Camera Camera stream for each location
Audio Audio stream for each location

Table 1. Overview of the PPPSpace sensors.

B. Persistent Storing of Event Data and Environment
Component Data
The persistent storing concept provides mechanisms

for saving and retrieving event data, and for descriptions of
components of the environment. These mechanisms are
base of the persistent, server-based runtime environment.

The environment is capable of storing all data gathered
by sensors persistently as event data. This enables
components of the environment to retrieve data from the
central server-based runtime environment independently of
their actual location. Sensor data is typically hierarchical
and relational—that is, sensor data can have a semantic
relationship with each other and can also be nested (e.g.,
multiple sensor data can be the ingredients of a composed
data set). Therefore, all data is stored hierarchically based
on the sensor the information originated from, and the
time of occurrence.

The environment also stores the descriptions of its
components persistently. For instance, properties for each
sensor (e.g., collecting variants, descriptions, data types)
can be saved, retrieved, but also changed over time.

C. Parallel Processing and Distributing of Event Data
The parallel processing and distributing concept

provides mechanisms for the simultaneous handling of
incoming data in different components of the
environment. Therefore, the server provides parallel
subsystems for event data distribution to internal inference
engines for the abstraction of high-level information, and
attached clients that act as actuators.

Inferencing information requires a data distribution
process where the server includes all inference engines into
the notification distribution process, providing them with
the necessary event data. Several inference engines can be
used in series, while each inference engine relies on the
processed data of another inference engine in the series as
input. The event data processed in inference engines can
originate from the respective user’s or other users’ sensor
data, and considers the individual disclosure preferences.

Table 2 provides an overview of the inference engines
that can be used in the PPPSpace concept.

Distributing event data in parallel to subsystems and
to actuators allows the server to handle a huge amount of
incoming data. Actuators are registered, managed, and
notified according to a publish/subscribe concept with
scalable adaptive publish to interested subscribers.

Table 2. Overview of the PPPSpace inference engines.

Inference Engines [0,*]
Name Description

String
Filter

Returns event data if string matches

Threshold
Filter

Returns event data if threshold is
reached

XML Tag
Filter

Filters XML documents for the
occurrence of a tag; can be configured to
either return complete event data, or
matching sub-tree, or the sub-tree’s
contents

Logical
Connec-
tions

Logical connections: AND, OR, NOT

In this concept, actuators are subscribers to data that is
published by the server. Subscribers are notified whenever
events they are interested in occur. For each notification,
the server dispatches a notification process that is handled
in the background, parallel to the notification processes of
all actuators and other attached clients.

Table 3 provides an overview of the actuators in the
PPPSpace concept.

Actuators [1,*]
Name Description

Global
PPPSpace
Presenter

Presentation of notification on all nodes
of a PPPSpace environment

Local
PPPSpace
Presenter

Presentation of notification on a certain
nodes of a PPPSpace environment

Desktop
Notifica-
tion

Presentation of notification on a
workstation computer (either as
information presentation; or as start of
application)

Mobile
Notifica-
tion

Presentation of notification on a mobile
phone

Table 3. Overview of the PPPSpace actuators.

D. Dynamic Configuring and Sharing of Configurations
The dynamic configuring and sharing concept provides

mechanisms for the end-user configuration of the
environment components and a sharing mechanism for
configurations of the users.

With the help of an editor, end-users configure their
personal environment. The editor offers graphical user
interface elements that represent abstractions of the
software and hardware used in the environment. End-users
instantiate user interface elements representing
environment components in the editor and configure the
data flow between these components. During the
configuration process, the editor’s user interface elements
reflect the current state of all environment components and
allow the users to inspect recent event data as well as
shared configurations of other users. This way the users do
not need any technical skills of the underlying event and
notification infrastructure—they simply manipulate
objects on the graphical user interface.

When multiple users make use of the same
components in a similar way, the editor highlights this
synergetic use and allows users to browse and inspect the
corresponding configurations of other users. Multiple
synergetic use of the same components leads to more
complex and highly adapted configurations that represent
comprehensive user scenarios.

The graphical user interface and all user interface
elements of the editor are dynamically generated according
to the settings for each environment component. This
includes the required user interface elements (i.e., text
fields, sliders, option menus) and their contents (i.e.,
thresholds, descriptions, sensor values). This sophisticated
approach allows the presentation of collecting variants
representing disclosure levels to end-users. The user
interface elements and their contents are permanently
synchronised in a way that any configuration change in
the editor is reflected in the server and vice versa.

III. IMPLEMENTATION
In this section, we provide details on the software

architecture of the PPPSpace environment consisting of
the PPPSServer, the PPPSEditor, the PPPSPresenter, as
well as the PPPSClient and the PPPSMobileClient.

The PPPSpace environment provides a sophisticated
base technology for an event and notification infrastructure
with technical scalability and with abstraction from the
technical complexity for the end-users.

The mechanisms for persistent storing of data are
implemented in the PPPSServer system that provides
gateways for the exchange of data between the server and
the other systems of the PPPSpace environment using
XML Remote Procedure Call (XML-RPC) [24]. The
PPPSCl i en t s and PPPSMobileClients permanently
capture data from the environment through sensors and
make use of the aforementioned gateways to submit the
gathered data to the PPPSServer, where the data is
processed in parallel and evaluated using inference engines.
The PPPSPresenters are the primary nodes of the
PPPSpace environment and provide the hardware for
presenting audio and video streams as well as event data in
actuators. The PPPSEditor allows users to configure the
PPPSpace environment based on sensors, inference
engines, and actuators.

Figure 1 shows the component diagram of the
systems described in the subsequent sections. All systems
are implemented in Java (Java 2 Platform, Standard
Edition 1.5.0_16) [21] on Mac OS X.

Subsequently we provide details on the
implementation of the central concepts of the PPPSpace
environment.

A. Permanent Capturing
The permanent capturing of data is implemented in the

PPPSClient and PPPSMobileClient systems. Both
transmit the gathered data from sensors to the PPPSServer
for persistent storing, distributing to subscribers, and
further processing.

Within the PPPSClient system, the subsystem
PPPSCSensors provides handlers for retrieving data from
the respective user’s computer (i.e., locally available
sensors) and Web resources (i.e., shared workspaces and
social networks). This PPPSCSensorHandler allows
access to sensor implementations written in AppleScript
[1] and Java [21]. Each PPPSC-SensorHandler instantiates
SensorTask for retrieving data in parallel and according to
end-user configurations. The PPPSCGUI provides users
with an overview of active sensors.

The capturing behaviour of the PPPSCSensors
permanently adapts to the users’ changes of the
configurations in the PPPSEditor. When end-users
conduct changes to their configurations in the
P P P S E d i t o r , an event is transmitted on the
ConfigurationChanged sensor to the PPPSServer. The
PPPSServer notifies all PPPSClient clients that are
subscribed for events from this sensor, using the described
XML-RPC publish/subscribe mechanism. The
PPPSClient clients retrieve recent configurations when
the notification is delivered, and updates each SensorTask.
For instance, if a user changes the collecting variant of a
specific sensor in the PPPSEditor, the actual behaviour of
this sensor is adapted accordingly.

With the P P P S M o b i l e C l i e n t system, the
PPPSMCGPSSensor captures the data of the current
location of the user with the big5 framework [13], and
sends it to the PPPSMCProxy. The PPPSMCProxy is
implemented using Java Server Pages (JSP) [23] and
forwards that event data via XML-RPC to the
PPPSServer.

B. Persistent Storing
The persistent storing of event data and user

configurations is realised in the subsystems of the
PPPSServer. The PPPSServer receives the gathered event
data from the PPPSClient and PPPSMobileClient via its
Adapter and SensorPort subsystems. The Management and
Persistence subsystems of the PPPSServer provide
advanced mechanisms to store data in a database.

Several concepts are implemented for optimised
performance of the persistent storing. A generic database
implementation in the Persistence subsystem supports
parallel communication, and pooling of database
connections and statements. It also provides access to
several database management systems based on JDBC
[22]. A caching mechanism in the Persistence and
Management subsystems optimises frequent accesses to
recent data, such as event data, sensor configurations, and
actuator configurations. The caching mechanism is
transparent to attached clients, which generally access

getter and setter methods of the Gateway subsystem.
Depending on the access interval, the Management
subsystem delegates the query either to the cache (for short
intervals) or to the database (for mid to long intervals).

The PPPSEditor provides a tool for managing user
configurations. It is a specialised front-end for the
PPPSServer and connects via the PPPSEServerHandler to
the PPPSServer in order to store and retrieve user-
generated configurations of PPPSpace environment
sensors, inference engines, and actuators. Configurations
consist of serialised XML data that is validated and
deserialised by the PPPSEGraphHandler. From the XML
description of a configuration, the PPPSEGraphHandler
dynamically creates graphical representations of the
environment components of a configuration. These
representations are visualised in the editor’s PPPSEGUI
component PPPSEGraph, which is based on a JGraph
user interface element [2].

C. Parallel Processing and Distributing
The parallel processing of event data in the PPPSpace

environment is implemented in the PPPSServer and the
subscribed PPPSClients , PPPSMobile-Clients , and
PPPSPresenters. The Management sub-system processes
incoming data; this includes the simultaneous processing
in the I n f e r e n c i n g subsystem as well as the
ActuatorManager subsystem.

Figure 1. Component diagram of the architecture of the PPPSpace environment.

Inference engines, implemented as components of the
Inferencing subsystem, provide results of their processing
operations to sensors that can be used throughout the
PPPSpace environment, including the PPPSServer itself.

The Actua torManager is responsible for the
registration and management of actuators and for matching
incoming event data. When event data matches an existing
subscription, the matching data is published to the
actuator client using the publish/subscribe mechanism,
implemented in the PublisherXMLRPC as part of the
Gateway subsystem. For each actuator, a ThreadPool-
Executor task is created for parallel notification
distribution. P P P S C l i e n t s and PPPSPresenters
implementing actuators register as subscribers using their
IP address, a reserved listening port, an actuator ID, and a
remote method. Distributed notifications include the event
data, which in turn ensure the parallel processing on
numerous clients in the PPPSpace environments. The
PPPSMobileClients act as actuator as well, but require a
different mechanism for receiving and presenting event
data as follows. The PPPSMCProxy actively requests
event data from the subsystem G a t e w a y of the
PPPSServer. The user triggers this request on demand, in
order to reduce network traffic and power consumption on
the mobile device. The PPPSMCGUI then presents the
event data in a simple list view in reverse chronological
order showing the latest events on top of the list.

D. Dynamic Configuring and Sharing
The dynamic configuring and sharing of user

configurations is implemented in the PPPSServer and
PPPSEditor systems. Using the Gateway subsystem of
the PPPSServer , the PPPSEditor retrieves data on
available environment components.

For dynamic configuring each location in the
PPPSpace, the PPPSEBrowser provides an overview of

available sensors, inference engines, and actuators. The
PPPSEBrowser is populated with data using the
PPPSEServerHandler , which retrieves and parses
environment component descriptions in XML format. The
Inspector for accessing environment components is based
on a dynamic user interface generation concept. Its user
interface elements such as JLabel , JTextField ,
JPasswordField, JcomboBox, and JSlider are created
from the evaluated XML description. These XML
descriptions are based on information about collecting
variants and the required user input fields for each user
interface element.

Additionally to the dynamic configuring of
environment components, the PPPSEditor also supports
sharing—it notifies end-users when the same environment
components are used in a similar way in different user
configurations. Therefore, the PPPSEServerHandler
subsystem of the PPPSEditor implements a parsing and
matching algorithm for finding synergies in user
configurations using an event-based XML pull parser,
based on the Java StAX [6] standard.

IV. PPPSPACE DEPLOYMENT
The PPPSpace environment has been deployed in our

workgroup and is currently being used. In this section we
describe the technology setup and report on a performance
evaluation.

A. PPPSpace Setup
The PPPSpace environment consists of hardware and

software. The configuration that we are using is shown in
Figure 2. The PPPSServer system is deployed on the
scml server that is a Mac mini with PPC 1.2 GHz
processor speed, 1GB of memory and Mac OS X 10.4.11
as operating system.

Figure 2. Deployment diagram of the PPPSpace environment as used in our workgroup.

The PPPSClient and the PPPSEditor systems are
deployed on workstation computers (PowerMac G5, Dual
1.8 GHz processors, 1 GB of memory, running Mac OS
X 10.4.11). The 14 workstation computers are connected
to the server on a 100Mbit/s Ethernet campus area
network (CAN) and are located in two offices of the
workgroup’s laboratory (i.e., CML-B11, CML-HS7). The
PPPSClient and PPPSEditor are connected to the
PPPSServer via XML-RPC for sending and receiving
event data and user configurations. The software sensors
(i.e., mail, calendar, shared workspace, music, notes,
social network) are part of the PPPSClient. They
permanently gather data and transmit these data to the
PPPSServer according to the users’ collecting variants.
The PPPSMobileClient is deployed on an iPhone 3G
extended with the big5 framework. The PPPSPresenter
system nodes consist of:

• a dedicated Mac mini computer with the same
system and hardware attributes as the PPPSServer
(in our setting we use ccml16 and ccml20)

• wide screen displays are wall-mounted to be
prominently visible from all workplaces in the
offices (ViewSonic 37” monitor with built-in
stereo speakers)

• USB microphones to capture audio data (Logitech
USB Desktop Microphones)

• network cameras to capture video data (AXIS 206)
The PPPSPresenter systems are connected to the

PPPSServer using XML-RPC. The PPPSPresenter
systems connect to the camera using HTTP streams. Both
offices are connected using the 100 Mbit/s CAN.

B. PPPSpace Performance
In order to get an impression of the runtime behaviour

of the PPPSpace environment we conducted two
performance evaluations.

We had two distinct setups. In the first setup, a single
event was sent to the PPPSServer on a sensor. We
measured the latency for notifying all actuators registered
for this sensor. We sampled latency values with different
numbers of actuators. We started with 1 actuator and
increased by 1 up to 25 actuators. In the second setup, a
fixed number of 25 actuators were registered for a single
sensor. We sent a varying number of sequential events in
the range of 1 and 20 events, and measured the latency
required for notifying all 25 actuators. For the evaluations,
we used two MacBook Pro computers (2.2 GHz, 3GB
memory, running Mac OS X 10.5.7, and Java 1.5.0_19)
that were directly connected using a 1000 Mbit/s Ethernet
local area network. One computer hosted the PPPSServer.
The other computer implemented the actuators, sent the
events, and wrote the calculated latencies to a file. For
each evaluation we have conducted five cycles measuring
latencies.

The results of the first setup, as illustrated in
Figure 3, show an increasing latency with an increasing
number of actuators. Overall, the maximum latency for
notifying 25 actuators is below 65 ms. Across all five
iterations, the difference between minimum and maximum
latencies remained mostly low (<10 ms), with a peak
difference of 17 ms in the medium range of 15 to 20
actuators.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25
Number of Actuators

La
te

nc
y

[m
illi

se
co

nd
s]

Best
Worst
Avg

Figure 3. Performance chart of the PPPSpace event notification
distribution for an increasing number of actuators.

The results of the second setup, as illustrated in
Figure 4, show that the latency also increases with
growing number of events. However, the average latency
for notifying 25 actuators with 20 events is below 870
ms. The two outlier values (9 and 15 events) cannot be
explained by the behaviour of the PPPSpace environment
(they are probably results of network transmission
latencies).

0

200

400

600

800

1000

1200

0 5 10 15 20
Number of Events

La
te

nc
y

[m
illi

se
co

nd
s]

Best
Worst
Avg

Figure 4. Performance chart of the PPPSpace event notification
distribution for an increasing number of events.

As both evaluations show, the PPPSpace scales with
an increasing number of clients implementing actuators as
well as increasing number of events distributed to these
clients. The small difference between best- and worst-case
latencies indicates that the PPPSpace notification
distribution mechanism is reliable. The multi-threaded
mechanism works well for a large number of outgoing
notifications that result from a limited amount of
incoming event data. However, a large number of
incoming event data results in increasing latencies for
notification distribution. This is due to the sequential
processing (one for loop in the Java program) of
incoming event data, which presents a bottleneck for the
parallel processing of event data (i.e., notification
distribution and inference engines). It was clear for us that
the sequential processing here is a bottleneck, but this
systematic performance evaluation provides interesting
details about it.

V. RELATED WORK
The PPPSpace combines concepts from media spaces,

event notification infrastructures, and editors.

A. Media Spaces
Several media spaces provide connections between

rooms and their users. Some allow selective information
disclosure by users and are introduced below.

RAVE [7] provides audio and video channels
connecting distributed users. In RAVE, up to 20
simultaneous connections between people in their offices
are possible. Users can permit access to their audio and
video channels. RAVE is limited to audio and video, and
does not provide awareness information.

Notification Collage [8] is a media space with audio
and video channels and awareness information. Its users
can select sensors and manipulate simple properties (e.g.,
refresh rates, image sizes). It has limitations compared to
the PPPSpace: it can only distribute data through a central
server via broadcast to all presentation screens; and it can
only present raw and unfiltered data.

Magic Window [16] is a media space that also
provides audio and video channels for the users.
Additionally, presence and availability information on the
users is integrated into the video channel images. Users
configure disclosure settings as fidelity levels that trigger
blur image filter. So, Magic Window has advantages for
information providers over Notification Collage, but has
the same limitation for information recipients—it can
only present unfiltered data.

The PPPSpace provides audio and video channels, and
awareness information. Beyond the media spaces
presented, the PPPSpace focuses on the fine-grained
configuration of information disclosure using a graphical
editor. Furthermore, the PPPSpace is rooted on a
sophisticated sensor-based event notification infrastructure
for the distribution of information.

B. Event Notification Infrastructures
Several event notification infrastructures have been

presented. Some examples supporting cooperative work
scenarios are introduced below.

Khronika [17] provides sensors for capturing data from
the environment, an infrastructure for distributing events
to interested users, and a simple editor for users to specify
interests. Users express interests in events by constraints,
and at runtime daemons check if the constraints match.
While Khronika was a great and early infrastructure, it
lacks sophisticated and easy to use end-user configuration.

The Elvin infrastructure is a notification service with
publish-subscribe functionality, where users can subscribe
to data of interest [5]. It provides elegant technology on a
network infrastructure level, and allows users to have
content-based selection of notifications. In Elvin event
notifications are a represented as a tuple of attribute-value
pairs. Elvin also lacks an easy-to-use editor.

The NESSIE awareness information environment [19]
captures event data, analyses the users’ current context
based on the event data, and provides notifications of the
users according to the current context. It provides a range
of sensors, a centralised server with filtering mechanisms,
and actuators for presenting information. Compared to the
PPPSpace it provides sophisticated possibilities of

retrieving event data from the server, but it lacks
convenient end-user specifications of interests.

The iCAAS [4] allows access to data in wireless
sensor networks. Its server provides fast delivery of filtered
sensor data. However, further processing of the data needs
to be implemented on the clients for each application.

The sensor-based platform Sens-ation [10] provides a
framework for developers of sensor-based infrastructures. It
consists of sensors, actuators and plugin mechanisms for
inference engines. The CoLocScribe concepts [9] for
publish and subscribe have been developed for Sens-ation.
The CoLocScribe use case made use of a media space
concept based on video. The P P P S p a c e provides
innovative concepts for permanent capturing, persistent
storing, and parallel processing and distributing that go
beyond Sens-ation and CoLocScribe. It presents event data
on specific nodes, workstation computers, and mobile
phones in parallel. It integrates audio and video; and it
provides an elaborated and easy-to-use editor for
configuring sensors, inference engines, and adapters.

The PPPSpace offers—compared to traditional event
notification as well as Sens-ation and CoLocScribe—a
smooth integration of audio and video streaming with
event capturing, processing, and presenting as well as
with end-user configuration in an easy-to-use editor.

C. Ubiquitous Computing Editors
Ubiquitous computing editors provide abstractions for

the environment components and devices. Some are based
on simple metaphors and interaction techniques to be used
by end-users and are sketched below.

The Jigsaw Editor [15] supports users in configuring
domestic ubiquitous environment. By dragging user
interface elements (jigsaw pieces) from the list view onto
a canvas, users create compositions that interconnect real-
world sensors and devices. Differences among the jigsaw
pieces (some offer an output port, others an input port,
some both) reflect the connection properties of the
underlying devices. Overall, the selection of environment
components is limited to domestic appliances and devices
and provides no mechanisms for filtering or further
processing of gathered data.

The eGadgets Editor provides a front-end to the GAS
framework [18]. By means of connecting the user interface
elements’ inputs and outputs, users generate a wide range
of scenarios consisting of home appliances. The GAS
framework models individual environment components
following a plug-synapse model, where each environment
component offers a set of abilities and requests services
from other environment components as well. The
eGadgets Editor does not provide synergy notifications.

The iCap editor [20] allows users to prototype
applications and scenarios for context-aware environments.
Following a pen-based interaction technique, the system’s
environment components (input and output devices) may
be interconnected to form a conditional rule-based
construct in a user-friendly way. iCap allows users to draw
their own sketches, which are used to represent the
underlying devices within the editor environment. The
iCap system does not provide synergy notifications.

In the PPPSpace environment, the PPPSEditor
provides a flexible graphical front-end that reflects the
numerous generic configuration options. It provides
flexible synergy notifications and sharing of user
configurations.

VI. CONCLUSIONS
In this paper we motivated the need for user-

configurable awareness information as well as audio and
video data. We introduced the advanced concepts and
implementation of the PPPSpace for permanent capturing,
persistent storing, and parallel processing and distributing.

The PPPSpace can be easily extended by adding new
environment components. The user interface of the
PPPSEditor dynamically adapts to the required properties
of environment components. Users can extend the
repository with new sensors, inference engines, and
actuators; and realise scenarios of arbitrary complexity. It
is also easy to include new sensors and actuators on the
mobile phone by implementing new functionality for
querying the sensors of the iPhone that have not been used
yet (e.g., accelerometer).

The performance evaluation has shown that the
PPPSpace environment overall scales in the deployment
of our laboratory. Concerning the processing of incoming
events, there is room for improvements. Future work will
include innovative concepts for multi-threaded incoming
event processing, while maintaining consistency among
incoming data.

The integration of machine learning algorithms in the
future presents an opportunity to provide actuators in the
environment that reflect prevalent situations to a greater
extent, but also represents a challenge for the parallel
notification distribution mechanism.

ACKNOWLEDGEMENTS
We thank all members of the Cooperative Media Lab;

part of the work has been funded by the Federal Ministry
of Transport, Building, and Urban Affairs and by the
Project Management Juelich (FKZ 03WWTH018).
Thanks to the anonymous reviewers for valuable feedback.

REFERENCES
[1] Apple Computer Inc. AppleScript: The Language of Automation.

http://www.macosxautomation.com/applescript/, 2009. (Accessed
20/7/2009).

[2] Benson, D. Java Graph Visualisation and Layout.
http://www.jgraph.com/, 2009. (Accessed 20/07/2009).

[3] Bly, S.A., Harrison, S.R. and Irvin, S. Media Spaces: Bringing
People Together in a Video, Audio, and Computing Environment.
Communications of the ACM 36, 1 (Jan. 1993). pp. 28-47.

[4] Cinque, M., Di Martino, C. and Testa, A. iCAAS: Interoperable
and Configurable Architecture for Accessing Sensor Networks.
In Proceedings of the 3rd International Workshop on Adaptive
and DependAble Mobile Ubiquitous Systems - ADAMUS 2009
(July 13-17, London, UK). ACM, N.Y., 2009. pp. 19-24.

[5] Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D. and Segall,
B. Supporting Public Availability and Accessibility with Elvin:
Experiences and Reflections. Computer Supported Cooperative
Work: The Journal of Collaborative Computing 11, 3-4 (2002).
pp. 447-474.

[6] Fry, C. and Slominski, A. StAX - Home. http://stax.codehaus.org,
2009. (Accessed 20/7/2009).

[7] Gaver, W.W., Moran, T., MacLean, A., Lövstrand, L., Dourish,
P., Carter, K.A. and Buxton, W. Realising a Video Environment:
EUROPARC’s RAVE System. In Proceedings of the Conference
on Human Factors in Computing Systems - CHI'92 (May 3-7,
Monterey, CA). ACM, N.Y., 1992. pp. 27-35.

[8] Greenberg, S. and Rounding, M. The Notification Collage: Posting
Information to Public and Personal Displays. In Proceedings of

the Conference on Human Factors in Computing Systems - CHI
2001 (Mar. 31-Apr. 6, Seattle, WA). ACM, N.Y., 2001. pp. 514-
521.

[9] Gross, T. and Beckmann, C. Advanced Publish and Subscribe for
Distributed Sensor-Based Infrastructures: The CoLocScribe
Cooperative Media Space. In Proceedings of the Seventeenth
Euromicro Conference on Parallel, Distributed, and Network-
Based Processing - PDP 2009 (Feb. 18-20, Weimar, Germany).
IEEE Computer Society Press, Los Alamitos, 2009. pp. 333-340.

[10] Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-
Oriented Platform for Developing Sensor-Based Infrastructures.
International Journal of Internet Protocol Technology (IJIPT) 1, 3
(2006). pp. 159-167.

[11] Gross, T., Paul-Stueve, T. and Palakarska, T. SensBution: A Rule-
Based Peer-to-Peer Approach for Sensor-Based Infrastructures.
In Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications - SEAA 2007
(Aug. 27-31, Luebeck, Germany). IEEE Computer Society Press,
Los Alamitos, 2007. pp. 333-340.

[12] Gross, T., Stary, C. and Totter, A. User-Centered Awareness in
Computer-Supported Cooperative Work-Systems: Structured
Embedding of Findings from Social Sciences. International
Journal of Human-Computer Interaction 18, 3 (June 2005). pp.
323-360.

[13] Holtwick, D. Web App Browser and Framework - Big5 for
iPhone. http://www.big5apps.com/, 2009. (Accessed 20/7/2009).

[14] Hudson, S.E. and Smith, I. Techniques for Addressing
Fundamental Privacy and Disruption Tradeoffs in Awareness
Support Systems. In Proceedings of the ACM 1996 Conference on
Computer-Supported Cooperative Work - CSCW'96 (Nov. 16-20,
Boston, MA). ACM, N.Y., 1996. pp. 248-257.

[15] Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva,
B., Rodden, T. and Hansson, P. Playing with the Bits - User-
Configuration of Ubiquitous Domestic Environments. In Fifth
International Conference on Ubiquitous Computing - UbiComp
2003 (Oct. 12-15, Seattle, WA). Springer-Verlag, Heidelberg,
2003. pp. 256-264.

[16] Kim, H.H.J., Gutwin, C. and Subramanian, S. The Magic
Window: Lessons From a Year in the Life of a Co-Present Media
Space. In Proceedings of the 2007 International ACM
Conference on Supporting Group Work - Group 2007 (Nov. 4-7,
Sanibel Island, FL). ACM, N.Y., 2007. pp. 107-116.

[17] Loevstrand, L. Being Selectively Aware with the Khronika
System. In Proceedings of the Second European Conference on
Computer-Supported Cooperative Work - ECSCW'91 (Sept. 24-
27, Amsterdam, NL). Kluwer Academic Publishers, Dortrecht,
NL, 1991. pp. 265-278.

[18] Mavrommati, I., Kameas, A. and Markopoulos, P. An Editing
Tool that Manages Device Associations in an In-Home
Environment. Personal Ubiquitous Computing 8, 3-4 (July 2004).
pp. 255-263.

[19] Prinz, W. NESSIE: An Awareness Environment for Cooperative
Settings. In Proceedings of the Sixth European Conference on
Computer-Supported Cooperative Work - ECSCW'99 (Sept. 12-
16, Copenhagen, Denmark). Kluwer Academic Publishers,
Dortrecht, NL, 1999. pp. 391-410.

[20] Sohn, T. and Dey, A.K. Interactive Poster: iCAP: An Informal
Tool for Interactive Prototyping Context-Aware Applications. In
Extended Abstracts of the Conference on Human Factors in
Computing Systems - CHI 2003 (Apr. 5-10, Fort Lauderdale,
Florida). ACM, N.Y., 2003. pp. 974-975.

[21] Sun Microsystems Inc. J2SE 5.0. http://java.sun.com/j2se/1.5.0/,
2009. (Accessed 20/7/2009).

[22] Sun Microsystems Inc. Java SE Technology - Database.
http://java.sun.com/javase/technologies/database/, 2009.
(Accessed 20/7/2009).

[23] Sun Microsystems Inc. JavaServer Pages Technology.
http://java.sun.com/products/jsp/, 2009. (Accessed 20/7/2009).

[24] UserLand Sof tware Inc . XML-RPC Home Page.
http://www.xmlrpc.com/, 2009. (Accessed 20/7/2009).

