
GroupRecoPF:
Innovative Group Recommendations in a Distributed Platform

Tom Gross, Christoph Beckmann, Maximilian Schirmer
Faculty of Media

Bauhaus-University Weimar
99423 Weimar, Germany

<firstname.lastname>(at)medien.uni-weimar.de

Abs t rac t—Group recommender systems prov ide
groups of users with shared recommendat ions .
They have great potential for easing group
decision processes, while at the same t i m e
entailing new technological and user-centred
challenges. In this paper we present t h e
GroupRecoPF platform providing developers
with support for building scalable and user-
fr iendly group recommender s y s t e m s . I t
leverages on advanced concepts for group
recommendation merging strategy e x p l o r a t i o n ,
performance optimisation, session persistence
and mobility, as well as open interfaces.
K e y w o r d s—Group Recommender Platform;
R e c o m m e n d e r A l g o r i t h m s ; D i s t r i b u t i o n ;
S c a l a b i l i t y .

I. INTRODUCTION
Recommender systems aim to facilitate individual

users’ decision making by providing them with
suggestions of choices to make, even if they lack personal
experience of the alternatives [25]. They ‘create
recommendations tailored to individual users rather than
universal recommendations for, well, everyone’ [19,
p. 15]. They support users in everyday-live situations
with the help of sophisticated algorithms. These
algorithms rely on a user’s preferences as the basis for
generating predictions—that is, a user expresses her taste
towards the system: explicitly by means of ratings, or
implicitly through following recommendations [16, 24].

Group recommender systems go beyond the individual
user and provide groups of users with a shared
recommendation. They try to consider all group members
preferences and generate a shared recommendation that fits
the whole group. They are rare and mainly support
hedonic activities, since these generally occur in pairs or
groups (e.g., watching movies, eating out, travelling
abroad). For instance, the PolyLens system is an early
example of a group recommender systems offering shared
movie recommendations to groups [20].

Despite their clear advantages for groups and their
performance, group recommender systems entail new
recommendation algorithms as well as the their software
architecture.

Group recommender algorithms need to respect the
diverse taste of a group in the generation of

recommendations [11, 29]. Group recommender systems
typically rely on aggregation algorithms for merging the
individual preferences of all group members. From a
group process perspective, the algorithms should generate
a prediction of the appreciation for the entire group. So,
novel approaches for recommender algorithms need to be
developed and explored with end-users.

Software architectures need to address distribution and
scalability [10]. Group recommender systems typically
have a distributed architecture and need to address
scalability of user- and system-generated requests as well
as user- and system-triggered use and re-use of sessions.

In this paper we present the GroupRecoPF platform
providing developers with support for building user-
friendly and scalable group recommender systems. The
G r o u p R e c o P F platform offers concepts and an
implementation supporting developers of group
recommender systems for pairs or groups of users who
want shared movie recommendations. It leverages on
advanced concepts for group recommendation merging
strategy exploration, performance optimisation, session
persistence and mobility, as well as open interfaces. The
platform faces the technological and social challenges of
group recommender systems through adaptable and
extensible group recommendation merging strategies. It
relies on the easy exploration of merging strategies for the
development and adaptation of group recommender
systems, and it supports parallel processing and
sophisticated caching mechanisms for fast group
recommendation generation and presentation. The platform
offers persistence of ratings, group recommender sessions,
and recommendations. This persistence provides history
for users and input data for recommendation generation
algorithms. Furthermore, the platform provides open
interfaces for connecting mobile and desktop group
recommender clients. Clients access session-based recom-
mender data and encapsulate the complexity of the recom-
mendation process in an easy-to-use group interaction.

In the next section we give a brief overview of related
work. We then introduce the concepts of the
GroupRecoPF platform for merging strategy exploration,
request management, and programming interfaces. We
report on the implementation of these concepts in a
distributed architecture. Finally, in the conclusions we
summarise our contribution and glance at future work.

II. BACKGROUND AND RELATED WORK
The GroupRecoPF platform leverages on previous

work concerning traditional single-user recommender
systems, group recommender systems, and distributed
parallel event notification infrastructures. In this section
we glance at the most relevant of this related work.

A. Single-User Recommender Systems
Single-user recommender systems provide

recommendations based on previously specified preferences
to individual users. Some frequently mentioned early
single-user recommender systems are Tapestry ,
GroupLens, and PHOAKS.

Tapestry [6] was the first system to introduce the
collaborative filtering approach for supporting users in
handling large amounts of messages and documents from
mailing lists. It provides a relevance level determined from
previous users’ reactions to messages they read. Possible
reactions are annotations to messages for implicit
feedback, or replies to messages for direct feedback. The
system processes reactions for later use in filters, and for
message delivery.

GroupLens [24] follows the concepts of Tapestry and
generalises its approach to allow diverse external services
to connect and transfer their ratings (e.g., netnews). It
provides a distributed architecture for better scalability. A
matrix-filling approach guarantees for better predictions.

PHOAKS (People Helping One Another Know Stuff)
[28] helps users finding relevant information by providing
recommendations for URLs. It analyses the mentions of
URLs in messages of online conversations (e.g., netnews
messages) as input data for collaborative filtering, and
recommends frequently found URLs.

Although all three approaches use collaborative
filtering mechanisms, they are not dedicated to groups of
users. As we will describe later, the GroupRecoPF
platform offers group recommendations using various
merging strategies and it employs a single-user
recommender system using collaborative filtering in the
background.

B. Group Recommender Systems
Group recommender systems generate and present

shared recommendations to pairs and groups of users. Here
we sketch interesting approaches for the simple
computation of group recommendations, for the merging
of single-user recommendations, and for the presentation
of group member preferences.

The MusicFX system [18] nicely addresses everyday
needs of groups of users who want to find a compromise
in the music played while they exercise in a fitness centre.
It relies on ratings that users have expressed towards a list
of music genres, and determines a group recommendation
by averaging the genre ratings of all present fitness centre
users. Rating values range from –2 for “hate” to +2 for
“love”. Based on these ratings, the system is able to
estimate the users’ predictions for music tracks that are
associated with these genres.

The P o l y L e n s system [20] is a movie group
recommender system tha t generates movie
recommendations for groups of users. Based on ratings
expressed by users on a movie recommender Website, the
system generates recommendations using a collaborative
filtering approach. The PolyLens system introduces new
ways to aggregate the predictions for groups of users to
generate group recommendations. The authors propose
two different approaches: either a pseudo-user that contains
all ratings of the group members, or generating
recommendations lists for each user and merging these
lists for group recommendations.

The Travel Decision Forum recommender system [12]
presents a collaborative approach for distributed groups of
users who want to find a compromise for a group
vacation. The system supports asynchronous
communication between spatially separated group
members through animated avatars that represent absent
members by speech and text messages. The reactions of
the avatars are determined by the previously specified
ratings of the corresponding users. This simple interaction
model abstracts from the complexity of the ratings on
multiple dimensions (e.g., room facilities, hotel facilities,
sports facilities, leisure activities) and provides awareness
of other user ratings during the rating process.

All three group recommender systems have different
underlying algorithms that are hard-coded. In contrast to
these systems, the GroupRecoPF provides interchangeable
merging strategies in recommendation sessions during
runtime and allows their exploration as described below.

C. Distributed Parallel Event Notification Infrastructures
The technological concepts of the GroupRecoPF

platform are related to event notification infrastructures.
The concepts benefit from existing knowledge of data
handling, of distribution, and of scalability in early and
established infrastructures.

Traditional event notification infrastructures (e.g.,
Khronika [17], Elvin [4], NESSIE [22], ENI [9]) realise
the capturing, processing, storing, and delivery of data
gathered from the environment. They provide interfaces for
connecting clients as well as for communicating with
environment components.

The SensBution [8] platform presents a flexible
distributed approach for a sensor-based peer-to-peer
architecture. Using inference rules, users query relevant
information by describing the content of events they are
interested in. The platform relies on a network of peers to
retrieve the requested event data.

The PPPSpace [7] provides scalable concepts for a
media space with permanent audio and video connections
into distant locations as well as awareness information on
events that result from various sensors. It focuses on the
parallel delivery of notifications according to user
preferences.

All these approaches offer mechanisms for gathering,
processing, and distributing event data. However, they
focus on content-filtering of event data, rather than on
collaborative filtering for notifying interested clients.

III. GROUPRECOPF CONCEPTS
The GroupRecoPF platform provides concepts for the

flexible exploration of merging strategies, management of
requests in the recommendation generation process, and
programming interfaces for connecting clients.

A. Merging Strategy Exploration
The GroupRecoPF platform relies on merging

strategies for the generation of group recommendations.
It generates either group recommendations in the form

of movies with the best group predictions for a given
group with given constraints (i.e., circumstances that have
influence on the relevancy of a movie, such as local
movie show times, or the group members’ budgets), or
companion recommendations as other users for a given
movie with given constraints (i.e., circumstances that
have influence on the relevancy of companions, such as
their presence on the friend list and as their movie taste).
A group prediction is a given movie’s anticipated overall
rating for a given group. Group predictions originate from
merging lists of user predictions. A User prediction is a
given movie’s anticipated rating for a given single user
(where typically the given movie has not yet received a
rating of the given user). In the GroupRecoPF platform
user predictions are gathered from a single-user
recommender based on collaborative filtering.

Merging strategies are key to the acceptance of
recommendations in group recommender systems. They
are often referred to as social value functions emphasising
the fact that they need to find a delicate balance of the
group members’ diverse tastes and preferences,
multifarious social relations among them, and
expectations of the group activity to be recommended.
Therefore, the research on merging strategies for group

recommenders and their effects on the acceptance are
highly explorative.

The merging strategy exploration concept of the
GroupRecoPF platform consequently allows developers to
easily explore merging strategies and their implications
for the group process. The GroupRecoPF platform offers
the GroupRecoPF Editor—a graphical editor that allows
switching merging strategies and inspecting and
manipulating their parameters at runtime. It also allows
evaluators to prepare group recommender sessions for
conducting user studies with a group recommender system
based on the GroupRecoPF platform.

While any number of merging strategies can basically
be applied, the GroupRecoPF platform currently provides
three merging strategies. The two most wide-spread and
well-documented merging strategies for movie
recommendations: the Weighted Maximum Average [1,
13], and the Weighted Maximum Minimum [20], and one
merging strategy for companion recommendations: the
Maximum Maximum.

Table 1 presents an overview of these strategies and
introduces a formal notation for describing their
algorithms. Here we use the following notation:

• M represents the set of movies that are available
to the group, with mj as a specific movie therein.

• U denotes the set of users in a group, with ui as an
individual group member.

• The generated user prediction for a given movie
and a given user is denoted as the function
p(ui, mj).

• The group weight factor wui for a user ui describes
the user’s influence in the group recommendation
generation.

• F denotes the set of users on the friend list of a
given user, with fi as a specific friend.

Merging Strategies
Name Formalisation Description
Weighted
Maximum
Average

Generates group predictions by means of a weighted
average of all user predictions. The movie with the
maximal group prediction becomes the group
recommendation. Has the best overall satisfaction for
the group, but risk of leaving individual members
behind.

Weighted
Maximum
Minimum

Generates group predictions by selecting the minimal
user prediction of all user predictions for each movie.
The movie with the maximal group prediction becomes
the group recommendation. Helps individuals with
minority taste, but does not optimise overall group
satisfaction.

Maximum
Maximum

Generates group predictions by selecting the maximal
user prediction of all user predictions for each movie.
The user with the maximal individual predictions
becomes the companion recommendation. The group is
suggested according to the best overall satisfaction.

Table 1. Overview of the currently available merging strategies of the GroupRecoPF platform.

B. Request Management
Efficient request management is essential for group

recommender systems, since they are typically request-
intense due to the fact that they are based on single-user
collaborative filtering services and merging their results.
The request management of the GroupRecoPF platform
optimises the request handling between its server and its
clients as well as external single-user collaborative
filtering services through parallelisation and caching.

In the GroupRecoPF platform a central server receives
numerous requests from end-users’ clients who want to
receive group recommendations. The server translates
these requests into multiple user prediction requests that
are sent to single-user collaborative filtering services. It
then merges the results and sends them back to the clients.

The twofold request management allows faster
computation, merging, and delivery of recommendations
to clients:

• Client requests are based on session management
for fast response times.

• Service requests are based on caching mechanisms
for efficient data fetching.

Client request management. In the GroupRecoPF
platform each recommendation process ranging from the
specification of group members, movies, merging
strategies and their parameters to the final delivery of the
generated group recommendation is encapsulated into a
unique session container. Consequently, direct and parallel
access to any data of each container is possible (e.g., the
group members participating in a specific recommender
process, the user predictions of each individual member).
The session container stores static and computed data
persistently. Static data is comprised of a list of users, a
list of movies, as well as the used merging strategy and
its parameter configuration. Computed data is a list of
movies sorted by their group predictions, out of which the
group members can choose the movie to be watched. The
session history allows access to current and past
recommender sessions by end-users and by the system.
End-users can browse through their personal history of
sessions and reuse previously specified data. The
persistence of computed data avoids performance-intense
recalculations for the system. The session history is also
used by evaluators, who want to evaluate the
recommendation process after run-time. They can retrieve,
review, and assess the recommendations in relation to the
specific merging strategies and their configurations. The
session mobility allows users to seamlessly switch
between different clients with full access to session data.

Service request management. The GroupRecoPF
platform optimises requests from the server to the single-
user collaborative filtering service through parallelisation
and caching. Parallelisation through threads allows
simultaneous access to multiple external data sources at a
time; the amount of threads the group recommender server
used for fetching data can be configured via parameters and
is between two and M x U. The caching mechanism stores
all data during the recommendation process about users

(i.e., names, ages, profile images), relations between users
(i.e., friend connections), movies (i.e., titles, first show
times, plots, associated genres, production years, average
community and critics ratings), user ratings (i.e., a
movie’s ranking as expressed opinion of a user), and user
predictions (i.e., a movie’s anticipated rating for a single
user). Each cache has a pre-defined size of elements it can
hold for later access. We distinguish two different caching
types: time-relevant cache for data with an expiry time,
and lifetime cache for data with permanent validity.

Data Type Caching
Time-r. Lifetime

Users X -
Friends X 1d
Ratings X -
Predictions X 15m
Movies X -

Table 2. Caching parameters.

Table 2 shows an overview of data and caching times.
The process of retrieving data is as follows: the server first
fetches data from the caches. The caches are self-
administrating: They check if the requested data is
available in memory and not expired, and return the data.
Otherwise, they fetch the data from the external services,
store them into the cache, and return them.

C. Programming Interfaces
The GroupRecoPF platform provides advanced group

recommendation services, not only to its own clients, but
also to third party clients via open interfaces. The
interfaces support a variety of clients ranging from rich
graphical desktop applications to lightweight mobile
clients. While the desktop applications require convenient
interfaces for accessing extensive detailed information,
mobile clients require payload-optimised interfaces for
accessing aggregated information. Clients that implement
the end-user interface and interaction connect to the
platform using either of two protocols: XML-RPC, or
REST/JSON. The communication is bi-directional and
allows both the access to recommender data, as well as the
manipulation of recommender sessions and configurations.

The open interfaces provide full access to the group
recommender and to merging strategies. They encapsulate
the complexity of the recommendation generation through
the sessions that contain information about: groups, their
members, and available movies. Clients connected
through the interfaces benefit from the previously
introduced technical concepts for request management.

Third party clients can follow the whole
recommendation process and have full access to all data
from the GroupRecoPF platform. At the beginning they
can initialise a group recommender process. They can
retrieve information on the circumstances such as friend
lists, or show times from nearby cinemas. Then, they can
send data such as a list of movies, a group of users, a
merging strategy and its parameters and request a group
recommendation from the platform.

IV. GROUPRECOPF IMPLEMENTATION
The software architecture of the GroupRecoPF

platform consists of the GroupRecoServer, the
GroupRecoEditor, and the GroupRecoClients, as well as
external single-user collaborative filtering services in the
SingleUserRecoService. Figure 1 shows the component
diagram of the systems described in the subsequent
sections.

Basically, the concepts for merging strategy
exploration are implemented in the GroupRecoServer and
GroupRecoEditor systems: the first one provides the
infrastructure for switching merging strategies and
configuring parameters within group recommendation
sessions; the second one is responsible for allowing
evaluators to configure recommendation sessions via a
graphical user interface. The concepts for request
management and the concepts for the programming
interfaces are implemented in the GroupRecoServer. These
concepts are used in the GroupRecoServer’s
communication with the GroupRecoClients and the
GroupRecoEditor, and are provided to external services.

The whole GroupRecoPF platform including all its
systems, sub-systems, and components is implemented in
Java (Java 2 Platform, Standard Edition 1.6.0_20) [27] on
Mac OS X 10.6.4. During the development of the
platform, we repeatedly conducted white-box and black-
box software tests for the implemented concepts using the
JUnit 4.8.2 test suite [15].

A. GroupRecoServer
The G r o u p R e c o S e r v e r system provides

recommendation services to all clients connected via the
GRServerXmlRpcGateway and GRServerRestGateway
subsystems. The GRServerManagement subsystem
delegates requests for recommendations to the
GRServerEngine and requests for other data to the
GRServerPersistence subsystems. It also handles the
session management with all necessary relations between
movies, users, groups, cinemas, and merging strategies.
The open interfaces concept is implemented in the
GRServerXmlRpcGateway and the GRServerRestGateway
subsystem.

The flexible merging strategies concept is
implemented in the GRServerEngine subsystem. The
implementation of the different merging strategies follows
the behavioural strategy pattern [5] and allows the easy
implementation and extension of respective strategies. We
implemented three merging strategies, introduced above,
in this subsystem. The GRSEngineMaxMinMerging and
the GRSEngineMaxAvgMerging components implement
two movie recommendation merging strategies; and the
GRSEngineMaxMaxMerging component implements the
companion recommendation merging strategy. They are
derived from the GroupRecoPFGREngine abstract class
and are interchangeable within the platform (cf. Figure 2).

In the G R S e r v e r E n g i n e subsystem, the
GRSEnginePreprocessing component prepares the data by
fetching user predictions from the external service and

Figure 1. Component diagram of the GroupRecoPF platform.

aggregating them. The GRSEngineExplanation
component logs crucial decisions of the system during the
recommendation process. This information is presented to
the group in the form of explanations. We have
implemented an abstract explanation class (i.e., containing
a rating value, a reference to a certain user or a reference
towards a particular movie) and derived eight specialised
explanation types from it.

Figure 2. Class diagram of the merging strategies following the strategy
pattern.

The GRServerPersistence subsystem implements the
parallel data retrieval and caching mechanisms as
introduced before. The GRSPersistencePreloader provides
configurable thread implementations (i.e., SwingWorker)
that allow the preloading of relevant user and group data,
such as the list of friends.

The GRSPersistenceCache component implements the
cache mechanisms, which use a generic constructor
Cache(Retriever<super K, extends V> retriever)
with a Retriever instance as argument. The retrievers are
specialised for the corresponding data objects. They obtain
the value for a given key, if no cache value exists. A
FastMap<K, V> is used as underlying data structure in the
GRSPersistenceCache. Synchronised access to the
put(K,V) and get(K) methods guarantee consistency. For
time-relevant data, such as predictions, we implemented
specialised caches with a second FastMap<K, Calendar>
data structure that is responsible for holding the last
update time for an associated key. A date comparison
using the Calendar data structure determines if either the
value received from the cache is still valid, or the value
should be obtained using a Retriever. All caches are
configurable in size and expiry time via the platform’s
properties.

B. GroupRecoEditor
The GroupRecoEditor provides a graphical front-end to

the GroupRecoPF platform, and is implemented as a
specialised GroupRecoDesktopClient that connects to the

group recommender sys tem u s i n g the
GRServerXmlRpcGateway subsystem. As shown in
Figure 1, the GroupRecoEditor system is composed of
three subsystems: GREditorManagement, GREditorGUI,
and the GREditorGraph.

The GREditorManagement subsystem consists of
components for the management and delegation of the core
subsystems and of components of the GroupRecoEditor
system. It is responsible for the creation and management
of graph nodes in the GREditorGraph subsystem and relies
on data from the GroupRecoServer. For the frequent access
to movie poster images and user profile images, the
GREdi torManagement subsystem provides the
PosterImageBuffer and UserImageBuffer
components, which retrieve and cache image data. Adding
new merging strategies to the GroupRecoEditor requires
little effort for changes in the GREditorManagement
subsystem.

The GREditorGUI subsystem manages all graphical
user interface elements and is responsible for the user
interaction with the system. It represents the application’s
main window, and contains and manages all other user
interface elements. Users can instantiate components and
request details about users, movies, and merging
strategies. Generated recommendations from the
GroupRecoServer are displayed, together with the
corresponding explanations. The GREditorGUI subsystem
provides a set of different implementations of JGlassPane
objects for advanced visual effects and user interaction
techniques. It also makes use of the Quaqua [23] and the
Mac Widgets for Java [21] frameworks.

The GREditorGraph subsystem provides a graph
model that encapsulates information about active nodes,
edges, and metadata and is based on the JGraph [14]
component. It also realises the edges according to advanced
spline-based routing.

C. GroupRecoClients
The GroupRecoClients realise group interaction with

specialised graphical user interfaces, according to different
application scenarios. In the current implementation the
GroupRecoPF platform provides two types of clients:
GroupRecoMobileClient, and GroupRecoDesktopClient.

The GroupRecoMobileClient is a mobile client for the
Apple iPhone and supports group agents in finding a
movie for their groups. It connects to the
GroupRecoServer via the GRServerRestGateway,
implemented in REST/JSON [2 , 3] . The
GRSRestGatewayAggregator prepares the data in the
JavaScript Object Notation (JSON) format, the
GRSRestGatewayInterfaces provide API calls for clients
to access and manipulate data, such as configuring group
recommendation sessions.

G r o u p R e c o D e s k t o p C l i e n t s such as the
GroupRecoEditor provide rich graphical applications for
desktop computers. They typically connect to the
GroupRecoServer via the GRServerXmlRpcGateway,
implemented in XML Remote Procedure Call (XML-
RPC) [26].

D. SingleUserRecoService
The SingleUserRecoService provides interfaces and

implementations for retrieving data about movies, users,
ratings, and predictions. In the current implementation, it
is provided through an external single-user collaborative
filtering service.

For guaranteeing a high level of security, all requests
for data are encapsulated in user-authenticated sessions,
which are handled in the various subsystems and passed by
all subsystems beginning with the clients. The
communication between the GroupRecoPF and the
SingleUserRecoService is based on an REST/JSON API.

Figure 3 shows a typical client request (e.g., initiated
in the GroupRecoEditor system) for retrieving movie data.
First, the users authenticate in the editor. Then, the
GRServerXmlRpcGateway subsystem handles this request
and distributes it within the GRServerManagement
subsystem. The GRServerManagement is responsible for
the session handling. After successfully authenticating
against the SingleUserRecoService, it creates a local
cookie. This cookie is stored in the GRServerPersistence
subsystem for later use.

The second request in Figure 3 retrieves movie data
and relies on the previously created cookie for
authentication. The GroupRecoEditor initiates the request,
and the gateway subsystem forwards the request to the
G r o u p R e c o M a n a g e m e n t subsystem. The
GroupRecoPersistence subsystem delivers the requested
cookie, which is required to retrieve data from the
SingleUserRecoService. As every cookie has an expiry
time, the validity of the cookie is checked. The
SingleUserRecoService returns the movie data in the JSON
format. This data is finally converted for the XML-RPC
protocol and transferred t o the requesting
GroupRecoEditor. In case the authentication fails, the
system notifies the requesting client.

V. CONCLUSIONS
In this paper we introduced the GroupRecoPF. It

provides flexible merging strategies and facilitates their
exploration. It offers parallel processing of requests for
non-blocking access to the system’s components, and for
multi-threaded data fetching from external data sources, as
well as persistent storing of recommendation sessions for
later reuse, and programming interfaces providing
gateways to clients. So far, the GroupRecoPF platform is
completely implemented and deployed and has been used
for eight weeks.

For evaluating the accuracy and the acceptance of
group recommendations generated by new merging
strategies the GroupRecoPF platform can easily be
extended. The GroupRecoPF platform provides the
GroupRecoEditor for developers and researchers. The
editor’s graphical user interface dynamically adapts to new
merging strategies and shows their parameters. It also
allows evaluators to compare data of various
recommendation sessions, as well as manipulate sessions
during group studies for evaluating the social implication
of parameters. We tested the GroupRecoPF platform with
an attached GroupRecoMobileClient with fifteen users,
organised in teams of three users each.

Future work remains in measuring the performance of
the platform for distribution and scalability, and
evaluating the acceptance of the given recommendations in
user studies. It would be interesting to test the
performance of the platform with varying numbers of
teams (e.g., ten, twenty, thirty teams), sizes (e.g., three,
seven, ten members), hardware (e.g., desktop PCs,
smartphones, multi-touch devices) and network
connectivity (e.g., 2G, 3G, WiFi), and circumstances
(e.g., low, medium, high availability of movies and
cinemas in neighbourhood). While the acceptance of the
two merging strategies for group recommendations of

Figure 3. Sequence diagram of a typical GroupRecoEditor request towards the SingleUserRecoService for retrieving movie data.

movies has been well-documented, the experience with the
companion recommendation merging strategy is limited.
Acceptance evaluations should, therefore, address
companion recommendations.

Also, extending the programming interfaces for
multifarious communication among the platform’s
systems would be interesting (e.g., facilitating
communication among the clients in situations were wide
area networks are not available using Bluetooth).

ACKNOWLEDGEMENTS
We thank all members of the Cooperative Media Lab,

and the moviepilot GmbH. Part of the work has been
funded by the German Research Foundation (DFG GR
2055/2-1). Thanks to the anonymous reviewers.

REFERENCES
[1] Ardissono, L., Goy, A., Petrone, G., Segnan, M. and Torasso, P.

Intrigue: Personalised Recommendation of Tourist Attractions for
Desktops and Handset Devices. Applied Artificial Intelligence -
An International Journal 17, 8-9 (2003). pp. 687-714.

[2] Crockford, D. JSON: JavaScript Object Notation.
http://www.json.org/, 2010. (Accessed 2/8/2010).

[3] Fielding, T. Architectural Styles and the Design of Network-
Based Software Architectures. Ph.D. thesis, Don Bren School of
Information and Computer Science, University of California,
Irvine, Irvine, CA, 2000.

[4] Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps, T.
and Segall, B. Augmenting the Workaday World with Elvin. In
Proceedings of the Sixth European Conference on Computer-
Supported Cooperative Work - ECSCW'99 (Sept. 12-16,
Copenhagen, Denmark). Kluwer Academic Publishers,
Dortrecht, NL, 1999. pp. 431-450.

[5] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1994.

[6] Goldberg, D., Oki, B., Nichols, D. and Terry, D.B. Using
Collaborative Filtering to Weave an Information Tapestry.
Communications of the ACM 35, 12 (Dec. 1992). pp. 61-70.

[7] Gross, T., Beckmann, C. and Schirmer, M. The PPPSpace:
Innovative Concepts for Permanent Capturing, Persistent Storing,
and Parallel Processing and Distributing Events. In Proceedings of
the Eighteenth Euromicro Conference on Parallel, Distributed,
and Network-Based Processing - PDP 2010 (Feb. 17-19, Pisa,
Italy). IEEE Computer Society Press, Los Alamitos, 2010. pp.
359-366.

[8] Gross, T., Paul-Stueve, T. and Palakarska, T. SensBution: A Rule-
Based Peer-to-Peer Approach for Sensor-Based Infrastructures.
In Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications - SEAA 2007
(Aug. 27-31, Luebeck, Germany). IEEE Computer Society Press,
Los Alamitos, 2007. pp. 333-340.

[9] Gross, T. and Prinz, W. Modelling Shared Contexts in
Cooperative Environments: Concept, Implementation, and
Evaluation. Computer Supported Cooperative Work: The Journal
of Collaborative Computing 13, 3-4 (Aug. 2004). pp. 283-303.

[10] Han, P., Xie, B., Yang, F. and Shen, R. A Scalable P2P
Recommender System Based on Distributed Collaborative
Filtering. Journal of Expert Systems with Applications 27, 2 (Aug.
2004). pp. 203-210.

[11] Herlocker, J.L., Konstan, J.A., Terveen, L. and Riedl, J.
Evaluating Collaborative Filtering Recommender Systems. ACM
Transactions on Information Systems 22, 1 (Jan. 2004). pp. 5-53.

[12] Jameson, A. More Than the Sum of Its Members: Challenges for
Group Recommender Systems. In Proceedings of the Working
Conference on Advanced Visual Interfaces - AVI 2004 (May
25-28, Gallipoli, Italy). ACM, N.Y., 2004. pp. 48-54.

[13] Jameson, A. and Smyth, B. Recommendation To Groups. In
Brusilovsky, P., Kobsa, A. and Nejdl, W., eds. The Adaptive
Web. Springer-Verlag, Heidelberg, 2007. pp. 596-627.

[14] JGraph Ltd. Java, AJAX, and Flash Graph Visualisation and
Layout. http://www.jgraph.com/, 2010. (Accessed 2/8/2010).

[15] JUnit.org. Welcome to JUnit.org! | Junit.org. http://www.junit.org/,
2010. (Accessed 2/8/2010).

[16] Lieberman, H., Van Dyke, N.W. and Vivacqua, A.S. Let's
Browse: A Collaborative Web Browsing Agent. In Proceedings of
the 4th International Conference on Intelligent User Interfaces -
IUI'99 (Jan. 5-8, Los Angeles, CA). ACM, N.Y., 1999. pp. 65-68.

[17] Loevstrand, L. Being Selectively Aware with the Khronika
System. In Proceedings of the Second European Conference on
Computer-Supported Cooperative Work - ECSCW'91 (Sept. 24-
27, Amsterdam, NL). Kluwer Academic Publishers, Dortrecht,
NL, 1991. pp. 265-278.

[18] McCarthy, J.F. and Anagnost, T.D. MUSICFX: An Arbiter of
Group Preferences for Computer-Supported Collaborative
Workouts. In Proceedings of the ACM 1998 Conference on
Computer-Supported Cooperative Work - CSCW'98 (Nov. 14-18,
Seattle, WA). ACM, N.Y., 1998. pp. 363-372.

[19] Monroe, D. Just For You - Recommender Systems That Provide
Consumers with Customised Options have Redefined e-
Commerce, and are Spreading to other Fields. Communications of
the ACM 52, 8 (Aug. 2009). pp. 15-18.

[20] O'Connor, M., Cosley, D., Konstan, J.A. and Riedl, J. PolyLens: A
Recommender System for Groups of Users. In Proceedings of the
Seventh European Conference on Computer-Supported
Cooperative Work - ECSCW 2001 (Sept. 16-20, Bonn, Germany).
Kluwer Academic Publishers, Dortrecht, NL, 2001. pp. 199-218.

[21] Orr, K. macwidgets - Project Hosting on Google Code.
http://code.google.com/p/macwidgets/, 2010. (Accessed
2/8/2010).

[22] Prinz, W. NESSIE: An Awareness Environment for Cooperative
Settings. In Proceedings of the Sixth European Conference on
Computer-Supported Cooperative Work - ECSCW'99 (Sept. 12-
16, Copenhagen, Denmark). Kluwer Academic Publishers,
Dortrecht, NL, 1999. pp. 391-410.

[23] Rande l shofe r , W. Quaqua Look and Fee l .
http://www.randelshofer.ch/quaqua/, 2010. (Accessed 2/8/2010).

[24] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J.
GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In Proceedings of the Conference on Computer-
Supported Cooperative Work - CSCW'94 (Oct. 22-26, Chapel
Hill, NC). ACM, N.Y., 1994. pp. 175-186.

[25] Resnick, P. and Varian, H.R. Introduction to special issue on
Recommender Systems. Communications of the ACM 40, 3 (Mar.
1997). pp. 56-58.

[26] S c r i p t i n g N e w s I n c . X M L - R P C H o m e Page.
http://www.xmlrpc.com/, 2010. (Accessed 2/8/2010).

[27] Sun Microsystems Inc. J2SE 6.0. http://java.sun.com/javase/6,
2010. (Accessed 2/8/2010).

[28] Terveen, L., Hill, W., Amento, B., McDonald, D. and Creter, J.
PHOAKS: A System for Sharing Recommendations.
Communications of the ACM 40, 3 (Mar. 1997). pp. 59-62.

[29] Vozalis, E. and Margaritis, K.G. Analysis of Recommender
Systems' Algorithms. In Proceedings of the 6th Hellenic European
Conference on Computer Mathematics and its Applications -
HERCMA 2003 (Sept. 25-27, Athens, Greece). Athens
University, Athen, Greece, 2003. pp. 732-745.

