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ABSTRACT
This paper posits that spatially structured concepts can function as
a visual representation of knowledge, a notion supported by com-
mon methods of eliciting and presenting mental models. Despite
an existing gap in understanding the correlation between visual
structure and knowledge representation, this study aims to clarify
this relationship. To this end, we conducted a study wherein par-
ticipants rated pairwise relationships between ten concepts on a
discrete scale ranging from one to ten. Subsequently, we compared
these ratings with weights derived from the distances between con-
cepts in human-generated spatial structures. Our findings unveil
a linear relationship between the weights obtained through both
methods, indicating that spatial arrangements may systematically
reflect and encode knowledge.

CCS CONCEPTS
• Information systems→ Search interfaces; • Human-centered
computing→User studies;Hypertext / hypermedia; Graphical
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1 INTRODUCTION
The arrangement and visualization of units of information (con-
cepts), whether done digitally or analogously, in a 2D (or even 3D)
space is a human intuitive activity. It is used for externalizing or
communicating knowledge on an individual or cooperative level.
This presupposes, that arranging and clustering information units
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reflects human knowledge within the range of information pre-
sented (explicitly or implicitly) in the workspace. Spatial hypertext
systems use this structure, particularly the proximity values of spa-
tial nodes, as a basis for spatial parsing and for building context to
query the underlying knowledge base. This means the system must
assess a human-built spatial structure as accurately as possible in
terms of the knowledge it reflects. In cognitive science, mapping
out units of information is not only a common method for eliciting
and assessing the mental models of individuals, but may also serve
as a means to augment existing mental models. When performed
by a computer system, this process requires an accurate transfer
of human-generated structure to a more formalized representa-
tion of knowledge, enabling the system to incorporate “suitable”
information. Despite its importance, there is currently a lack of
understanding and knowledge about the correlation between the
proximity of information entities in a 2D workspace and a knowl-
edge representation by the system. The presented study found a
linear correlation between these factors.

2 MENTAL MODELS
Despite years of discussion on the concept of mental models, a
uniform definition and understanding are still lacking. This may
be attributed to the interdisciplinary nature and application of the
mental models theory. Doyle provided a brief summary of various
viewpoints on mental models in 1989 [11], as did Rook in 2013 [30],
who also attempted to propose a new definition. We will adopt a
widely recognized and generally stated definition: Mental models
are simplified conceptual representations stored in long-term mem-
ory, reflecting an individual’s understanding of the structure of
an external system [9, 21]. They emerge through interaction with
the external world, making them inherently subjective [28]. It is
suggested that mental models comprise two major components:
knowledge structures and the knowledge on how to use them [27].

Mental models are indispensable for predicting system behavior
and are a basis for informed decision-making and problem-solving.
They hold previously acquired knowledge of external systems and
facilitate inference in current situations, which is crucial when
dealing with complex systems [14, 22]. The ability to perform in
complex systems (heuristic competence [5]) has been discussed in
the literature for years (e.g., [2, 13, 39]) and has become increas-
ingly important in recent years [5]. In such systems, various actors
and (time delayed) feedback may affect the decision-making or
problem-solving process. Also, what has been shown to be decisive
for performance, is mental model accuracy [13, 39], as well as the
understanding of the system’s inherent causal relationships. This
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holds true, especially for ill-defined problem-types [10]. Further,
misinterpreting feedback or incorrectly accumulating knowledge
structures may also lead to failure [3, 5, 37]. Remarkably, presenting
system-information to experts who already possess highly detailed
mental models may lead to a decline in decision-making perfor-
mance (expertise reversal effect) [1]. The presented information
might be redundant to these people, imposing a cognitive load [41].

A possible way for improving decision-making and problem-
solving qualities may be the increase of transparency of a system
by providing structural information about it [5]. In particular, the
communication of underlying causal structures may support the
construction and reassessment of knowledge [19]. Also, analogous
inference from existing mental models is crucial when exploring
new and complex problem spaces in the outside world. Findings
from Gary indicated that “rigorous, unconfounded exploration of
the problem space facilitates accurate inferences about the struc-
tural relations in the source situation” [12]. This means that either
mapping out and refining an existing mental model or exploring,
for example, a structural representation of a new problem space,
may enhance an individual’s ability to handle complex situations
in the outside world.

Computer systems that support processes of model building or
model mapping may include spatial hypertext systems with recom-
mender functionality (e.g., SPORE [31]). By utilizing such systems,
users can elicit, reflect and refine their mental models on specific
topics in an exploratory manner. This may also foster creativity,
which is an important factor for making analogous inferences from
existing mental models [17, 25]. These systems utilize spatial prox-
imity to express the interconnectivity of information, often without
explicitly naming the type of relationship. This approach may be
conducive to the highly subjective nature of mental models and,
on the other hand, foster creativity. Additionally, these systems
offer high controllability to users over the presented information,
which may mitigate the issue of presenting redundant information
to experts, as discussed earlier. However, further research is needed
to fully understand and validate these conclusions.

3 VISUAL STRUCTURE AND KNOWLEDGE
It may be argued that spatially structured entities, such as those
found in spatial hypertext, serve as a simplified visual depiction
of knowledge pertaining to a particular system. This visual rep-
resentation evolves in accordance with the user’s comprehension
and manipulation of the system. Spatial hypertext systems like
SPORE [31] utilize human generated and successively manipulated
visual structure as a basis for spatial parsing and for building a
query context. This query context influences the selection of recom-
mendations presented to the user. Eventually, the system aims at
providing recommendations alignedwith a user’s intention, thereby
augmenting their existing knowledge. Consequently, the system
must assess a user’s current knowledge by analyzing the visual
structure the user is constructing. This describes the direct use of
externalized knowledge by a system. However, there still exists a
deficiency in both evidence and understanding regarding the cor-
relation between visual structure and its characteristics, such as
the proximity of entities or the application of color or shape-based
clustering, and knowledge in a spatial hypertext. Also, there is no

single valid way to express one’s knowledge. This may especially
be of interest, when using a system collaboratively.

4 USER STUDY
In order to contribute to the question on how visual structure is
related to an individual’s mental model (knowledge) and how this
relation can be leveraged by a computer system on a 2D workspace,
a user study was conducted. This study examined the perceived
semantic relationships of information entities, which were rated
on a numerical scale and arranged in a 2D workspace.

4.1 Objectives
As described in Section 3, spatial structures may be analyzed by a
spatial parser in order to capture a user’s knowledge and possible
intentions. The parser aims to extract meaningful representations
and relationships from spatial data, enabling the system to com-
prehend and interpret visual structures akin to a language with a
certain syntax and in a manner similar to human perception [16].
This syntax is mostly based on visual cues, such as spatial arrange-
ments, layouts, and contextual cues, but is also highly bound to
the individual creating the structure. Although spatial hypertext
has been formally defined in [34], the emerging characteristic of
the expressed structure cannot be covered by a formal grammar
at a satisfactory level. Instead, spatial parsers use heuristics to un-
cover some of the intended structure. Notable implementations
can be found in VIKI [26], VKB [36], CAOS [29], VITE [20], or the
spatio-visual parsers implemented by Schedel [34, 35]. This study
aims to gain insights into the alignment of individual ratings of
spatial relationships between entities of information with an estab-
lished baseline of ratings on a numerical scale. Our findings can
contribute to further develop suitable heuristics for spatial parsing
and system-based visual composition in spatial hypertext systems.

4.2 Method
4.2.1 Paired Comparison Rating. This method is aligned with com-
monly used techniques for assessing mental models [15, 33]. Re-
spondents were asked to provide ratings of the semantic relatedness
of concepts, they were already familiar with. To avoid ties, a rat-
ing scale ranging from 1 to 10 was selected. The concepts chosen
were in German, as the participants were native German speakers.
Figure 1 illustrates the configuration featuring a sample pair of
concepts.

4.2.2 Spatial Compositing. This method follows the (graphical)
mental model elicitation technique [18]. Unlike in commonly used
graphical elicitation techniques, participants were not instructed
to provide a graphical representation of relationships between enti-
ties (e.g., lines connecting entities). Instead, links between entities
were automatically computed as visible lines, with their thickness
varying based on the proximity of the connected entities (see Fig-
ure 2). Nonetheless, the significance of proximity, as a factor for
expressing relationships and their strength, was not explicitly com-
municated to participants. Respondents were tasked with arranging
information entities in a 2D workspace according to their perceived
semantic relationships. Participants were instructed to work intu-
itively and assured that there were no “wrong” solutions to this
task.

209



PAIRWISE – From Spatial Structure to Knowledge HT ’24, September 10–13, 2024, Poznan, Poland

Figure 1: Pairwise comparison between “Baum” (tree) and “Ast” (branch); rated with a ten

Figure 2: Spatial test instance with five concepts (i.e., nodes in a spatial hypertext); thickness of lines is an indicator of distance

4.2.3 Interview. A short interview (duration of approximately five
minutes) between each participant and the researcher was con-
ducted to clarify actions, for example the overlapping placement
of items within spatial compositing part of the study and the par-
ticipant’s intention behind it. In general, we used this interview to
gain insights into what participants were thinking during the test,
including whether certain actions were intentional or unconscious.

4.3 Setting
The test system is implemented as a Web application, based on
the Vue.js framework1, enabling participants to conduct the test
remotely. Figure 1 and Figure 2 are exemplary screenshots of the
application. The test was conducted either by direct communication
or via video conference2. Further, participants were allowed to use
a device of their choice (e.g., their own device), with which they

1https://vuejs.org
2https://zoom.us/

felt comfortable. Values were recorded for the width of the canvas,
ranging from 1319px to 2530px, and a fixed height of 800px3.

4.4 Participants
Thirteen native German speakers, aged between 15 and 65 (𝑥 = 38)
with a majority of male participants (𝑓𝑖 ≈ 0.62) were recruited
through convenience sampling, aiming for a demographically di-
verse group with respect to age and educational/professional back-
ground. Three participants were familiar with the topic of (spatial)
hypertext, while the others had no IT or research-related back-
ground. Five of the participants took part in the study via video
conference. Before conducting the study, informed consent for data
collection was obtained from all participants. Participation was
optional, and no compensation was given.

3Pixels (px) are relative to the viewing device. For low-dpi devices, 1px is one device
pixel (dot) of the display. For printers and high resolution screens, 1px implies multiple
device pixels.

210

https://vuejs.org
https://zoom.us/


HT ’24, September 10–13, 2024, Poznan, Poland Daniel Roßner, Lisa Eidloth, and Claus Atzenbeck

Table 1: The ten concepts and their English translation

Concept Translation

Laub (fallen) leaves
Baum tree
Lehrer teacher
Schule school

Infrastruktur infrastructure
Ast branch

Fahrrad bicycle
Physik physics

Photosynthese photosynthesis
Erde earth/soil/ground

4.5 Measures
During the test, interactions with the system were recorded and
stored. For pairwise evaluations, the duration from the moment a
pair of concepts is displayed until the “Next” or “Finish” button is
pressed was measured. Additionally, the order in which concepts
were displayed, and pairwise ratings were saved. Within the spatial
variant of the test, the time per instance and the following measures
were recorded:

• Concepts of an instance and their initial order when stacked
• Resolution and dimensions of the browser window during
the test

• The movement of objects, the updated positions and the or-
der of those events, such that a detailed replay of an instance
and/or session is possible (a movement is triggered when
an object is pressed, the mouse (together with the object)
moves and the button is released)

• The number of clicks each concept registers; determined by
a mouse button press followed by its release, irrespective of
any mouse movement in the meantime

4.6 Procedure
To minimize the number of variables, a fixed quantity of concepts,
each represented as a rectangle of uniform size and containing a
single word describing the concept, was presented within a 2D
workspace. The entities could be freely arranged, but participants
were restricted from deleting or altering them in terms of size, shape,
color, any other visual attribute, as well as their content. Zoom-
ing and panning were disabled within the workspace to maintain
consistent entity sizes across all participants. Furthermore, it was
ensured that each concept was easily distinguishable (i.e., readable)
by selecting an appropriate text size that ensured readability and
maintaining sufficient contrast for optimal visibility. The concepts
selected were intentionally simple, chosen based on the assumption
that each participant would be familiar with them before the test
(see Table 1). These concepts were chosen to represent various types
of semantic relationships, such as hierarchical connections (e.g.,
tree to leaf, building to school) and logical associations (e.g., school
and teacher). While some concepts naturally exhibit clear relation-
ships (or lack thereof), others possess more debatable connections,
such as teacher and tree.

9

2

object A

9

object C

object B

10

object D

4

0

Figure 3: Four objects and their distance measured in line
dashed; longest distance is highlighted in blue (10)

The study comprised two tasks, which were done sequentially:
First, respondents were asked to assess the relationship between
each pair of concepts using a provided numerical scale ranging
from 1 to 10, where 1 indicated “the two concepts are barely or
not related” and 10 indicated “the two concepts are very closely
related” (see Figure 3). The ratings served as the basis for each
participant’s knowledge. Participants were also advised to write
down “remarkable” pairs of concepts for later assessment. Next,
users were assigned the task of arranging the aforementioned con-
cepts on a 2D workspace based on their perceived relationships (see
Equation 1). Participants were cued that proximity and structure
are important to this task. Apart from that, they were provided
with minimal instruction on how to arrange concepts, and were
instead encouraged to intuitively find an arrangement.

Since the workspace did not support zooming or viewport move-
ment, it was impractical to display all concepts (𝑁 = 30) simultane-
ously. Moreover, the complexity of organizing a large number of
concepts within a workspace could overwhelm participants or even
result in frustration. Therefore, to mitigate this issue, the number of
simultaneously presented concepts was decreased, and participants
were instructed to complete multiple instances of the task, each
with a different sequence of concepts.

The visual structure created for each instance was analyzed
by a spatial parser to determine the strength of the relationship
between each pair of concepts. For this test, a rather simple parsing
method was applied: It is assumed that the closer two concepts
are in proximity, the stronger their relationship. This method does
not consider detecting larger visually connected groups of objects
or the temporal sequence in which the concepts were handled by
the participant. Therefore, the distance between objects is used to
measure the extent of their visual relation relative to the greatest
distance within an instance. As depicted in Figure 3, the parser
calculates the distances between four (𝑛) objects (𝑂1,𝑂2, . . . ,𝑂𝑛).
The greatest measured distance occurs between objects D and B. For
the sake of simplicity in this illustration, the distance is represented
by the number of dashes on the line (where 𝑁max = 10). Objects C
and D overlap, resulting in a distance of 0. In the subsequent step,
all distances are standardized using the greatest distance 𝑑max as
the reference point, and a rating 𝑅(𝑂𝑖 ,𝑂𝑘 ) is calculated as follows:

𝑅(𝑂𝑖 ,𝑂𝑘 ) = 1 − 𝑑 (𝑂𝑖 ,𝑂𝑘 )
𝑑max

(1)

The resulting ratings for the sample depicted in Figure 3 are
shown in Table 2. Note that a relationship rating of 1 can only be
achieved if two objects touch or overlap.
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Table 2: Interpreted ratings, based on the visual structure
depicted in Figure 3

𝑂𝑖 𝑂𝑘 R

A B 0.1
A C 0.8
A D 0.6
B C 0.1
B D 0.0
C D 1.0

4.7 Preliminary Test
To determine crucial factors for the outlined test setup, the de-
sign underwent testing and refinement through a preliminary test
with 34 participants (undergraduate students at Hof University,
Germany), during which the following factors were established4:

• Definition of a suitable number of concepts in total: 𝑁 = 10
(𝑁 = 30)

• Number of pairwise ratings with a numerical scale: 𝑁 = 45
(𝑁 = 8)

• Number of concepts per spatial interface instance: 𝑁 = 5
(𝑁 = 5)

• Number of spatial interface instances which participants
would be asked to solve: 𝑁 = 11 (𝑁 = 4)

During the preliminary test, each participant completed both
versions (i.e., paired comparison ratings and spatial compositing).
The time taken to complete these tasks, the positions of the concepts
in the spatial interface and the screen sizes used by participants
were recorded by the system. Upon examining the selected numbers,
it becomes apparent that individuals rate only a portion of the entire
data set: If 𝑛 denotes the number of concepts, then there are Δ𝑛−1
edges.

Δ𝑛−1 =

(
𝑛

2

)
=
𝑛 · (𝑛 − 1)

𝑛
(2)

Given the number of 30 concepts selected for the preliminary test,
there are 435 distinct pairs of concepts. However, only 8 of these
pairs were evaluated in this case. With 34 participants, a maximum
of 272 pairs could have been assessed. This implies that an analysis
of the ratings might not yield significant insights. Nevertheless,
this was not a primary concern for the preliminary test, as its aim
was to evaluate the test setup in general. The time recorded for
the paired comparison ratings was seven seconds for one pair (𝑥),
therefore, it took approximately one minute to complete the task.

The spatial interface used for the spatial compositing task en-
abled participants to rate a greater number of concept pairs. Ac-
cording to Equation 2, ten unique pairs can be generated, given the
five concepts displayed in one instance. On average, one instance of
the spatial compositing task was completed in 28 seconds (𝑥 ), there-
fore, one session took approximately two minutes. It was observed
that some respondents, even though participation in the study was
voluntary, “skipped” some spatial instances by not moving any
concept. This behavior might be attributed to a lack of motivation,

4The numbers used in the preliminary test are indicated in parentheses.

insufficient instructions from the researcher, or an excessive mental
load while performing the task. The test was therefore adjusted
to a smaller number of total concepts (from 30 to 10). Addition-
ally, the number of pairwise comparisons was increased from 8
to 45. This adjustment also ensures that each participant rates all
possible edges of the resulting knowledge graph. Additionally, this
supports to counteract the possibility of the resulting knowledge
graph becoming inadequate for deriving meaningful conclusions,
particularly if there are too many concepts and/or an insufficient
number of participants.

Due to a wide range of recorded screen sizes, five concepts were
considered an adequate number for the spatial variant. This ensured
that all concepts could be displayed on the screens without necessi-
tating scrolling, which could potentially increase the mental load
during the test. Conversely, reducing the number of concepts per
instance, could potentially result in less complex and ambiguous
structures.

In order to have ratings for all pairs of concepts, at least five
instances would be required for each session of spatial compositing.
Since each pair is rated in context of other pairs, and the spatial
session should have a similar duration to the pairwise comparison,
each participant was asked to solve 11 instances. This ensures that
each pair appears in at least two different contexts, which should
lead to more accurate results.

To improve the quality of participant responses, each participant
received individual instructions and was encouraged to ask ques-
tions about the system. Additionally, each test session was observed
by an instructor to gather feedback from participants’ verbalized
thought processes during the test.

5 RESULTS
All 13 participants completed the assigned tasks. However, one par-
ticipant encountered an issue during spatial sessions that required
moving concepts to organize them. It was possible to inadvertently
drag these concepts out of the visible area, rendering them unre-
coverable. To prevent this from influencing the results, data from
this specific session were excluded from the analysis presented
in the following. Table 3 shows a summary of the measured task
durations and the inferred ratings. The scores for spatial sessions
are calculated as described in Equation 1, and the values of the
pairwise comparison are adjusted to a normalized range of 0 to 1
to ensure consistency.

The objective of this study is to validate the alignment of the
inferred ratings of the spatial variant with the established baseline
of the pairwise comparison ratings. This was achieved through a
comparative analysis of the 45 pairwise values. The mean absolute
error (MAE) between the two variants is quantified as 0.10, with
the distribution represented in two box plot charts cf. Figure 4.
Before conducting tests to assess correlation, it is essential to ensure
shared understanding among participants regarding the intensity
of relationships between concepts. Consequently, the single-score
intraclass correlation5 for all participants in the pairwise comparison
task is calculated. The 𝐼𝐶𝐶 (𝐴, 1) falls within the 95% confidence
interval of 0.42 < 0.533 < 0.68. An F-test, used to compare both
distributions, confirms the null hypothesis of equal variance with

5𝐼𝐶𝐶 (𝐴, 1) : Two-way random, single measures, absolute agreement
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Table 3: Summary of rating and duration measurement for both tasks

Duration (in s) Rating

min mean max min mean max

Pairwise Comparison 2.7 6.3 11.7 0.09 0.49 1.00
Spatial Session 17.4 30.5 51.9 0.24 0.51 0.88

Figure 4: Inferred ratings for pairwise comparison and the
spatial task

𝑝 < 0.001. However, both box plots and a Shapiro-Wilk-test, which
accepted the null hypothesis with 𝑝 < 0.005 for both distributions,
do not support normality. The ICC-value indicates moderate [23] to
good [7] inter-rater agreement. Cohen’s weighted kappa (squared
distance off diagonal) aligns with 𝐼𝐶𝐶 (𝐴, 1) [38], and according to
the interpretation proposed by Landis and Koch [24], this denotes
a “substantial” inter-rater agreement.

The pairwise rating decisions of the participants vary in both
value and variance. While some pairs are consistently rated, others
are more controversial and exhibit greater variance. Figure 5 shows
the mean rating for each pair and their level of “controversy”. The
pairs Baum (tree)/Ast (branch) and Schule (school)/Lehrer (teacher)
achieved the highest average rating of 1.0 and the lowest variance of
0.0. The pair Lehrer (teacher)/Laub (leaves) received the lowest rat-
ing at 0.009. The most controversial pair in terms of variance, with
a value of 0.12, is Physik (physics)/Infrastruktur (infrastructure).

To assess the correlation between the ratings of both variants,
the mean weights are rendered on a scatter plot and fitted with
a linear model (lm) with a 95% confidence interval, cf. Figure 6.
Correlation is tested with Kendall’s rank correlation tau, as the
ratings do not follow a normal distribution. The resulting Tau-b
value is 𝜏 = 0.754 with 𝑝 < 0.001, therefore we can accept the
null hypothesis of Tau not equal to 0. According to Botsch [4] and
Cohen [8], a tau value of 𝜏 > 0.5 suggests a strong relationship.

Another exploration of the spatial variant focused on the relation-
ship between the duration of the task and the count of interactive
clicks. This association is visually depicted in Figure 7, which also
includes a linear model (lm) and its 95% confidence interval. The
evidence suggests that the longer the participants are engaged with
a spatial task, the more they interact via clicks. To measure this
connection, we used Kendall’s correlation test, which resulted in
a correlation coefficient of 𝜏 = 0.480 and a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001,
highly signifying a moderate correlation between the two assessed
variables.

6 DISCUSSION
The study confirmed that the duration of the tasks aligned with
the estimates of the preliminary test, indicating successful test
execution, aside from a single software bug. Feedback from the
participants suggested that the test length was appropriate, with
no reports of fatigue, although they found the pairwise compar-
isons somewhat monotonous. The ratings obtained from both tasks
showed similar averages but varied significantly in their distribu-
tion: the ratings from spatial sessions ranged from 0.24 to 0.88. This
variationmay be attributed to the algorithm used in the spatial tasks,
which assigns a zero rating to the concept pair furthest apart. How-
ever, participants appeared to focus more on creating a coherent
structure involving all five concepts rather than strictly assessing
distances. Similarly, the highest rating was similarly substantially
less than one.

Inter-rater agreement exceeded expectations, indicating con-
sistency even among concept pairs expected to be controversial.
The interclass correlation coefficient (𝐼𝐶𝐶) and Cohen’s weighted
𝜅, which reflect the variability of ratings, suggest that our selec-
tion of concepts effectively balanced controversial and consistent
pairs, as evidenced by a broad range of variance values. The result-
ing weighted knowledge graph encompasses ten concepts, with
weights based on participants’ ratings of each pair’s relationship.
This graph serves as a robust baseline for comparison with other
methodologies, such as those derived from spatial sessions.

The question addressed in this study is whether spatial structures
can be interpreted by a system, specifically a spatial parser, based on
proximity values, so that the resulting definable knowledge frame-
work reflects the knowledge presented in the human-generated
spatial structure. This objective aligns with common techniques
for mental model elicitation and representation. However, it re-
mains to be fully determined whether system-generated concepts
(i.e., recommendations) placed in an existing spatial structure may
augment an individual’s mental model, as practically addressing
this question was not part of this study. Our approach, employing
a simplistic spatial parser, generated a weighted graph, enabling
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(a) mean values (b) variance values

Figure 5: Mean ratings and their variance derived from pairwise comparison

Figure 6: Ratings for all 45 concept pairs, derived from pair-
wise comparison and inferred from spatial instances

direct comparison with the baseline. However, it is important to
note the limitations of the experiment:

(1) The restricted set of five concepts per instance raises ques-
tions about scalability and the clarity of more complex struc-
tures.

Figure 7: Clicks per spatial instance by duration in seconds

(2) The parser’s outputs are averaged across multiple instances
and users, rather than being used as direct inputs.

(3) The dynamic nature of knowledge and spatial hypertext
suggests that these static snapshots may not fully capture
the evolving context of information.

Our analysis aimed to demonstrate a correlation between the rat-
ings obtained from both the baseline (pairwise comparison ratings)
and the spatial approach, ideally reflecting each other. Although
the mean absolute error (MAE) was higher than expected due to
the range of ratings and the influence of controversial pairs, a clear
linear correlation was evident, as depicted in Figure 6. Kendall’s 𝜏
further supported this observation, indicating a strong relationship
between the variables. This can be attributed to the significance of
proximity in spatial hypertext applications and information visual-
ization in general [6, 35].

By normalizing the diverging minimums and maximums to a
consistent range from zero to one, the linear model describing the
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relationship between the baseline and the spatial ratings exhibited a
gradient close to 1 (1.06). Spatial ratings are derived from the relative
distances between concepts, assuming a linear correlation between
distance and relational weight. Essentially, as users decrease the
relational weight between two concepts, they proportionally reduce
the physical distance between them, and vice versa.

This discovery is crucial as it contributes to the insight on how to
visualize spatial relationships within hypertext systems. The linear
relationship between distance and weight holds practical implica-
tions, particularly in the spatial composition of concepts through
algorithms in a spatial hypertext application [32, 40]. For instance,
the weights derived from the pairwise comparisons can be trans-
lated into spatial distances ranging from 𝑑min to 𝑑max, based on a
linear correlation. To illustrate this concept, we employed Box2D6

to manage physical constraints and depicted deviations from ideal
distances with a color gradient ranging from light green to dark red.
For instance, the proximity of Baum (tree) to Photosynthese (pho-
tosynthesis) would be closer were it not for the spatial constraints
imposed by other elements within the system. This visualization,
depicted in Figure 8, underscores the practical significance of our
findings in translating implicit relations (i.e., associations based on
an individual’s mental model/knowledge) into an actionable spatial
structure. In our study, knowledge, represented as a simple undi-
rected weight between concepts, effectively predicts the proximity
with which individuals arrange these concepts in a 2D space.

𝑑 (𝑂𝑖 ,𝑂 𝑗 ) = (1 − 𝑅(𝑂𝑖 ,𝑂 𝑗 )) ∗ (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) + 𝑑𝑚𝑖𝑛 (3)

Figure 8: Simulated, force-directed layout of the gathered
weight data

Although not initially our focus, our findings suggest a corre-
lation between the number of clicks and time spent in a spatial
instance, indicating the iterative nature of spatial hypertext. Inter-
views support the notion that users iteratively refine their spatial
arrangements when they are uncertain about structuring. This
‘hands-on’ adjustment, as captured in system logs, enables the
analysis of evolving structures and facilitates the identification
6A 2D, rigid body physics engine for games: https://box2d.org/

of patterns within these adjustments. Understanding this refine-
ment process could enhance features like spatial parsing, similar to
advancements seen in Schedel’s temporal parser [35].

7 CONCLUSION AND FUTUREWORK
The presented study establishes a positive correlation between
weighted relationships derived from pairwise comparisons of con-
cepts and those observed in parsing spatial hypertext instances,
each containing five concepts. This validation underscores the prac-
tical value of spatial hypertext structures in facilitating knowledge
generation, indicating that users often encode their understanding
visually through the physical distancing of concepts. This discovery
supports the development of algorithms aimed at enhancing spatial
hypertext instances with additional functionalities, leveraging the
bidirectional relationship between structure and weight.

Future research could extend these findings by increasing the
scale of the study, involving more participants, expanding the
knowledge graph, and varying the number of concepts in spatial
instances. Additionally, there is a need for further exploration into
the effective integration of system-based recommendations into ex-
isting spatial structures. Moreover, conducting further analysis on
how users adjust and refine spatial structures could provide deeper
insights into their interaction patterns, potentially leading to en-
hancements in interface design and functionality within spatial
hypertext systems.
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