
PRIMI—An Open Platform for the Rapid and Easy Development of
Instant Messaging Infrastructures

Tom Gross, Christoph Oemig
Faculty of Media

Bauhaus-University Weimar
Bauhausstr. 11

99423 Weimar, Germany
{tom.gross, christoph.oemig}(at)medien.uni-weimar.de

Abstract
Many concepts and systems for the technical support

of communication, cooperation, and coordination of
workgroups have been developed in the research field of
computer-supported cooperative work over the last two
decades. Yet, spontaneous coordination with remote
parties can still be a challenge. Instant messaging tools
improve the situation by providing users with presence
and availability information about other users, and by
supporting spontaneous text chat among co-present users.
In this paper we present PRIMI (Platform for Research
on Instant Messaging Infrastructures)—an open and
flexible platform that provides software developers with
powerful, yet easy to use support for the implementation
of novel concepts for instant messaging infrastructures. It
offers the core functionalities for the development of
instant messaging infrastructures; and it uses a
sophisticated plug-in mechanism for adding user
interfaces and communication protocols, as well as
logging mechanisms.

1 Introduction

The primary goal of the research field of computer-
supported cooperative work (CSCW) is to develop
concepts and tools for the easy and flexible support of
social interaction in groups, which are often dispersed in
time and space [8]. Over more than two decades since the
emergence of CSCW many concepts and tools have been
developed enhancing communication, cooperation, and
coordination [3].

Yet, spontaneous coordination with remote parties
remains a challenge [10]. There are various approaches,
however, most of them have some unwanted side-effects:
having pre-arranged meetings can be too inflexible for
real-life spontaneous actions and reactions; sending emails
can leave it unclear to the sender when to expect a reply;
reaching somebody by phone, even if the person has a
mobile phone, strongly depends on the availability and
interruptibility of the callee; and sending short messages

via mobile phone can be challenging to the recipient,
because of the potentially high number of messages. Thus
besides various technical means, there is a tension
between the need of a caller to spontaneously approach a
callee over distance and the wish of the callee to avoid
inappropriate disruption.

Instant messaging tools improve the situation by
providing users with presence and availability information
about their counterparts, and by supporting spontaneous
text chats among co-present users. Since the invention of
the first general instant messaging tool (ICQ, cf. [13]),
these tools have spread tremendously, for both private and
professional purposes [11]. Most tools provide the same
basic functionality for registering, logging in, logging
out, manually setting the online status (e.g., ‘Online’,
‘Away’, ‘Do-Not-Disturb’, etc.), entering additional
information (e.g., a personal profile, or an away message
with information explaining what a user is currently
doing), file transfer, as well as real-time text chats among
online users and leaving messages for offline users.

Besides these features and strengths instant messaging
tools still suffer from considerable shortcomings:
• The online status has to be adapted manually; or the

online status is dependent on pure keyboard and mouse
events, assuming that a user who is not active has left
the computer (which is not always the case).

• The clients typically have common default alerts for
incoming messages, which can easily distract users and
interfere with their work.

• The alerts are often identical for all incoming messages
by default.

• Many users have a tendency towards sending many
messages, even in a single conversational turn [1].
We have designed and developed PRIMI (Platform for

Research on Instant Messaging Infrastructures)—a flexible
and open platform that provides software developers with
powerful, yet easy to use, support for the implementation
of novel concepts in the area of instant messaging. It
offers the core functionality for the development of instant
messaging infrastructures; and it uses a sophisticated plug-
in mechanism for the deployment of user interfaces and
communication protocols, as well as extensive logging
mechanisms.

In the remainder of this paper we present the concept of
the PRIMI platform and its reference implementation
PRIMIBase. We first discuss related work. Then we
describe a scenario explaining how an instantiation of
PRIMI—named PRIMInality—is used to implement an
instant messaging infrastructure for research purposes.
Finally, we draw some conclusions and provide glances on
future work.

2 Related Work

In this section we present work that is either similar
from a functionality’s perspective, or from an
implementation’s perspective.

From a functionality’s perspective consumer instant
messaging tools, enterprise instant messaging platforms,
and instant messaging research prototypes are similar to
PRIMI.

Many consumer instant messaging tools have emerged:
single protocol clients such as ICQ, AOL Instant
Messenger, Yahoo! Messenger, or MSN Messenger
typically only support their native protocol for the
communication between clients and server; and multi-
protocol clients such as Gaim, Trillian, Miranda, Adium,
Fire, or Proteus typically support several of the above
mentioned protocols in parallel [cf. 25 for an overview].
For most of these tools servers are typically not available,
and only a few clients provide application programming
interfaces for tailoring.

Enterprise instant messaging platforms like IBM Lotus
Instant Messaging and Web Conferencing, Microsoft
Office Live Communications, Novell GroupWise or Sun
Java System Instant Messaging have spread as business
critical application leveraging the communication between
co-workers. These infrastructures especially focus on
security, reliability, scalability, directory integration,
service access and availability, archive capabilities, and
branch specific legal issues (e.g., the Sarbane-Oxley Act).
They are comprised of server and client applications
configurable to work in highly complex settings usually
inside a company (including remote workers) but not
beyond (i.e., for internal communication). They offer
application programming interfaces, they are not flexible
enough for addressing the above-mentioned shortcomings.

Instant messaging research prototypes specifically
address some of the challenges mentioned in the
introduction. The QnA instant messaging client extension
aims to help users to identify the urgency on incoming
instant messages, and to notify users accordingly [1]. The
activities of users of the Awarenex instant messaging
client have been analysed and presented in Actograms in
order to make users aware of daily and weekly presence and
absence rhythms, through which the reachability of
remote users should be increased [2]. In the BusyBody
system the disruption of remote users was reduced by
automatically asking users from time to time about their
interruptibility, and by trying to avoid disruption in cases
of low interruptibility [12]. All these approaches have
interesting concepts and ideas. Yet, their technical

implementations are highly proprietary and mostly lack
interfaces to other applications.

From an implementation’s perspective message-
oriented middleware (MOM) has concepts that are similar
to PRIMI.

In message-oriented middleware [16] infrastructures and
frameworks realise program-to-program connectivity by
message passing, which can be leveraged for instant
messaging (e.g., Grapevine [17]). They usually provide an
application programming interface hiding the complexity
of protocols and platform-specific details allowing to build
reliable and scalable high-performance distributed
application networks across diverse platforms. Most
message-oriented middleware is implemented as client-
server architecture with queued message store-and-forward
capability, like IBM’s MQ Series [24]. The Java Message
Service (JMS), an integral part of the J2EE platform,
makes MQ services available to any of its applications
[21]. Leaving client-server architectures aside JXTA [22]
offers a peer-to-peer approach to distributing messages
among peer applications. On a whole it provides highly
generic technical support for any type of messaging. It is
very flexible, however at the cost of cumbersome low-
level programming that is necessary to build instant
messaging tools on top of it.

3 The Concept

Conducting research with instant messaging systems
usually requires the following steps: First, a concept for a
chat system comprised of client and server or peer-to-peer
components has to be developed and implemented. Then,
experiments can be performed by manipulating the
functionality of specific components of the system, and
studying the effects of the manipulation on its users.

This approach entails the following major drawbacks.
The developed systems are often proprietary: they hardly
utilise any standards. Only their developers are familiar
with their functionality. And theses systems are usually
not used outside the lab. Consequently, these systems are
hard to integrate and to extend. Each system is usually
developed from scratch: this entails a considerable effort,
and requires good knowledge from several areas of
computer science (e.g., user interfaces, communication
protocols). Due to this effort, these instant messaging
systems often remain rather simple.

Based on these findings from existing approaches, we
describe the concept of PRIMI by first specifying
requirements for this novel platform, and then we present
its software architecture.

3.1 Requirements

The PRIMI platform was designed and developed as a
generic platform to build client and server infrastructures
that support existing and custom protocols for
communication. The platform has to be flexible enough
to be integrated into other applications (e.g., as instant
messaging support module in a text editor) or to integrate

other applications into PRIMI (e.g., directory services
such as LDAP). It should serve as a platform for research
on user interfaces, especially awareness displays and
indicators on the client side, as well as event histories and
respective mechanisms (e.g., heuristics and algorithms to
generate prospective information from accumulated data)
on the server side. For these purposes, an instant
messaging platform has to meet the following
requirements:
• The platform should be open, extensible, and flexible.

Communication protocols and user interfaces are
considered to be components, which can easily be
integrated into an existing configuration, even at
runtime.

• The platform’s extension should be easy and efficient.
The use of components propagates the separation of
concerns—that is, research work on user interfaces does
not require work on neither communication nor
protocol issues.

• The platform should offer powerful logging
capabilities. To gain as much information as possible a
flexible and pervasive logging facility is need covering
all aspects of the infrastructure. Simple local user
history files will not suffice.

• The platform should be compliant with up-to-date
standards. Standards serve as a common language
among domain developers. They facilitate rapid
development and deployment and help to reduce
misunderstandings in naming and requirements. For
instance, the requests for comments (RFC) 2778 [5]
and 2779 [4] provide guidance concerning basic
requirements for instant messaging systems. Other
specific technical aspect of instant messaging are
covered by further RFCs contributed by the IMPP
Charter [cf. 14]).

• The platform should support various deployment
modes of the client: end-user modes with a pre-
configured start-up as well as expert-modes with free
configuration.

• The platform should be independent of the underlying
operating system in order to be of use to many
developers and end-users.
These requirements were the corner stones of the

subsequently described software architecture of PRIMI.

3.2 Software Architecture

The software architecture of PRIMI has been optimised
to particularly provide support for the following
development issues of instant messaging infrastructures:
communication (i.e., protocols and communication
components needed for instant messaging); data handling
(i.e., gathering, processing, and presentation of data
relevant to instant messaging); and application integration
(i.e., aspects on how to integrate other applications with
the infrastructure and vice versa). Table 1 provides an
overview of PRIMI features on the client and on the server
side.

In order to optimally provide these features, the PRIMI
platform is using a component-based approach, which is
based on plugins.

Figure 1 provides an overview of PRIMI’s software
architecture, which is subsequently explained. The PRIMI
platform is comprised of a central kernel (the plugin
application) and surrounding plugins (i.e., plugin
packages). There are two types of plugins: user interface
and communication plugins. The p lug in -based
communication among the individual components is a
vital part of the PRIMI architecture.

Alternate
communication
protocol plugin Client side

Adapter
XMPP

(SmackLib)

Alternate
communication

server
XMPP
serverServer side

XMPPAlternate protocol

PluginServiceLogService

ConnectorService AwarenessService

PRIMIKernel

Local history

Graphical
user interface

plugin

Alternate
user interface

plugin

Alternate
user interface

plugin

Skin

XML-RPC handler

Other handlers

Simple Wrapper

Application A

Application B

Figure 1. Overview of the PRIMI software architecture. The grey-shaded parts are implemented a s
part of the PRIMIBase reference implementation of the PRIMI platform.

Client side Server side
Communicat ion Communication

facilities for
protocols like
XMPP, ICQ, TOC
etc.

Server side
components for
protocols like
XMPP, ICQ, TOC
etc.

Data handling User interfaces,
awareness displays
and indicators,
sensor integration

Data integration,
event histories,
heuristics and
algorithms

A p p l i c a t i o n
i n t e g r a t i o n

Integration of
instant messaging
functionality into
other applications

Integration of
other application
and services into
servers

Table 1. Features of the PRIMI platform.

Therefore, we first describe the plugin mechanism, and
then introduce the individual components. Generally, in a
plugin architecture a central plugin application is extended
by components—the plugins—which are delivered as part
of plugin packages containing the plugin and further
resources needed. A plugin is a piece of code usually
dynamically loaded at runtime. However, it cannot run by
itself and has to interact with the plugin application to
provide a specific set of functionality [26]. Some well-
known examples of plugin-based systems range from
simple plugins in Web browsers [23] to complex plugins
in the development environment Eclipse.

In PRIMI, the plugin contract determines the
installation, registration, lifecycle, domain of use,
interfaces, and services offered by the plugin application
itself (cf. Figure 2).

defines

is developed for
complies to

•Installation
•Registration
•Lifecycle
•Integration
•Domain
•Services

Plugin
Contract

Plugin
Application

Plugin
Package

Figure 2. Plugin contract between plugin
package and plugin application

The PRIMIKernel provides the core of the PRIMI
platform; it consists of low-level services (the
PluginService and the LogService), and high-level services
(the ConnectorService and the AwarenessService). The
low-level services provide basic functionality for the high-
level services.

The PluginService realises the (un-)loading and
deployment of all plugins. Before accepting a plugin, its
interface compliance is validated and its functionality is
probed. Plugins are sorted by their type and are provided to
the platform and its services.

The LogService takes care of the platform’s logging.
Each class within the PRIMI platform has its own logger,
which is part of the platform’s logger hierarchy. Loggers
are extended by one or more handlers that output log data
to various destinations in specified formats. The
LogService supports multi-level logging—that is, the
platform is assigned a certain logging level and all log
statements of equal or higher level are processed. The log
level can be changed at runtime. While the kernel classes
access their loggers directly, plugins are using proxy
objects according to the Proxy pattern [6]—that is, plugin
components are wrapped into proxy objects, which
comply to the same kind of super interface. Log
statements are executed by these proxy objects. Thus
plugin developers do not have to be concerned about the
platform’s logging details.

The ConnectorService is a higher-level service on top
of the PluginService responsible for communication
protocol plugins (i.e., the Connectors). It allows
configuring a subset of active Connector plugins to be
seen and used by the user interface in the current session.
Thus it establishes a simple plugin access control
mechanism. Asked for a Connector (e.g., by type or
name) the ConnectorService returns a Connector, which is
actually a Connector implementation, wrapped inside a
ConnectorProxy object.

The AwarenessService is another high-level service
on top of the PluginService and LogService taking care of
awareness information. Current communication protocols
merely integrate presence as awareness information. The
AwarenessService allows utilising a broader set of
awareness information and its communication (for an
example see the scenario below).

All of these services are initialised at application start-
up. Besides them the plugin contract defines three API’s
outlining a plugin’s required functionality. As mentioned
before there are two types of plugins: plugins for user
interfaces and communication protocols (Connectors).
Each plugin complies with two interfaces, the generic
Plugin interface, and a specific interface (either the GUI or
Connector interface) (see Figure 3). The Plugin interface
offers a factory-like method returning a class instance
conforming to one of the specific interfaces.

PRIMI plugins are loaded at application start-up or at
runtime via a network connection. There are a great
number of possibilities for plugins. Connector plugins
may use third-party libraries, which are adapted to the
corresponding PRIMI interface using the Adapter pattern
[6]. Or one may implement the required methods entirely
inside a monolithic type of plugin. GUI plugins may
provide simple or complex user interfaces. The platform
assures they seamlessly work with the other components
the platform is configured with. Due to the reuse and
separate development of components, PRIMI represents a
generic platform for rapidly building research type specific
instant messaging solutions.

Figure 3. Example of a GUI plugin implementing two interfaces: the generic Plugin interface and the
GUI interface.

4 Implementation

The PRIMI platform is written in the Java
programming language [20]. This decision was not only
due to platform independence, but also due to the
availability of numerous Java’s APIs, which account for
eased extensibility and numerous possibilities of
integration. One of the Java APIs used in PRIMI is the
Logging API [19]. It offers multi-level logging, which
was extended by the concept of proxy objects as described
above. Additionally we use our own custom levels and
handlers (cf. Figure 1).

Java also provides powerful mechanism for the
acquisition and deployment of component code at runtime
(e.g., network class loading using a custom class loader),
and packaging. Plugins are delivered inside Java archive
files (.jar files). For plugin deployment simple
conventions, which are part of the plugin contract, have to
be met:
• The plugin’s main class implementing the Plugin

interface has to be named Plugin (cf. Figure 3).
• Plugins are placed within PRIMI’s plugin directory

(see Figure 4). Here, the .jar files are placed in
subdirectories named according to the package name of
the specific Plugin class (e.g., the .jar file of the class
de.myplugin.Plugin is placed inside the de.myplugin
directory).

• Everything belonging to the plugin package is included
in a single .jar file.
The PRIMI platform offers three types of deployment

modes. Software developers can choose one of the
following for the clients of their infrastructure:

• End-user’s mode. A simple wrapper allows defining a
fixed configuration, which is simply started.

• Application-integrated mode. Allows integrating
instant messaging functionality into other applications
(e.g., Web portals, email clients). These applications
then act as complex wrapper pre-configuring the
PRIMIKernel.

• Expert mode. Launches the Configuration Frame,
which allows administrating the available plugins, and
setting the application’s log level (cf. Figure 5).

Figure 4. PRIMI’s plugin directory structure.
For instance, it can be inferred from the
directory name de.smacklib that the main
plugin class is de.smacklib.Plugin.

PRIMIBase is a reference infrastructure of the PRIMI
platform. Its architecture contains two reference plugins: a
user interface and a Connector plugin using the Extensible
Messaging and Presence Protocol (XMPP) [18], formerly
known as the Jabber protocol. The first features a multi-
protocol capable user interface supporting multiple
accounts and tabbed chat windows. The latter implemented
an adapter on top of the SmackLib, a Java-based open
source XMPP library [15].

Figure 5. The Configuration Frame shows two available plugins, a GUI plugin named ComplexGUI
and a Connector plugin named PRIMISmack.

Finally, PRIMIBase’s LogService is equipped with two
custom handlers: a custom file handler responsible for
writing local user chat histories in flat files formatted in
XML, and a XML-RPC [27] handler for communicating
awareness information (i.e., log data) as part of the
AwarenessService (the next section describes where this
handler is used).

5 An Example Scenario

After the presentation of the concepts and
implementation of the PRIMI platform as well as the
PRIMIBase infrastructure, we now describe a little
scenario of another PRIMI-based infrastructure called
PRIMInality. First, we want to briefly outline some of
the scenario’s central research questions and then we
explain how PRIMInality addresses the aforementioned
research problem.

5.1 Beyond Existing Instant Messaging Systems

Current instant messaging tools support presence
awareness using online states like ‘Available’, ‘Away’ or
‘Do-Not-Disturb’. Yet, the accuracy of these states proves
to be insufficient. Being ‘Away’ may result from keyboard
or mouse inactivity, although the user may still be sitting
at her desk. We used the PRIMI platform to implement
three new concepts for instant messaging:

The first concept extended the way of measuring a
user’s presence status to obtain a more precise picture. We
wanted to use a conglomerate of software and hardware
sensors yielding not only more accurate and reliable

information of the user’s current availability but also
further and different presence status incarnations.

In the second concept we applied this new information
in two ways: First, we used presence awareness features
like a common presentity list to display the availability of
other users applying our just mentioned new presence
states. Second, the PRIMInality client was not only aware
of the (new) availability of others, but also about the
user’s own status. We used the latter for appropriate user
interface adaptations such as when a user is not at her
desk, loud notification signals alert for incoming
messages while more silent ones are used when the user
works at her computer (please note that this configuration
aims to support users who have a personal office, not
disturbing others with their loud notifications).

The third concept added personalities. In reality we
expose only certain details of our identity, the ones that
are appropriate to our current situation [7]. Personalities
allow to selectively disseminate information about the
online states to other users—that is, a user can create
several personalities and specify for each personality the
information that is published as well as the information’s
recipient (e.g., a private personality can show private
phone numbers to friends; a working personality can
reveal the office phone number to business colleagues).
Handling personalities in several ways goes beyond
existing features such as the multi-account capability of
clients. For instance, one core challenge is the adequate
adaptation of the client’s user interface, and of notification
in a situation where a user has multiple concurrent
personalities. Here, a solution is to adapt the user interface
and notification to the user’s most recently active
personality.

Alternate communication
server XMPP serverServer sideSensBase server

Alternate
communication
protocol plugin

Client side

Adapter

XMPP
(SmackLib)

XMPPXML-RPC Alternate protocol

Location A

Graphical
user interface

plugin

Alternate
user interface

plugin

PluginServiceLogService

ConnectorService AwarenessService

PRIMInality Kernel

Local history

Location B
Location C

Sensor
B

XML-RPCXML-RPC

Sensor
A

Figure 6. The scenario’s architecture setup. We used three locations that were prepared with two
hardware sensors and the PRIMInality client.

5.2 Rapid and Easy Development

In order to realise these concepts, PRIMIBase just
needed some rapid and easy adaptations to become
PRIMInality—the GUI reference plugin was replaced with
a new GUI plugin that handles the three new concepts, and
that communicates with the SensBase infrastructure.

SensBase [9] provides a generic infrastructure that
facilitates the registration and management of hardware
sensors, the capturing and storing of sensor values via
these sensors, and the retrieving of information on sensors
and present and past sensor values via various gateways
(e.g., Web-Service, XML-RPC, Sockets, CGI). The
SensBase infrastructure was equipped with two hardware
sensors, which provide movement information to the
PRIMInality’s AwarenessService via XML-RPC.

The communication with the SensBase infrastructure is
needed to retrieve additional sensor data about the user’s
physical presence in her office.

In order to accommodate the new concepts, the new
GUI plugin contains the logical settings (a simple table)
calculating the user’s online status from the information
of two hardware sensors (movement at the user’s desk and
movement in the rest of the user’s room) and two software
sensors indicating whether the user is currently logged in
with the PRIMInality client and whether there are open
chat windows in the PRIMInality client. The latter
information is actually retrieved from PRIMInality’s
loggers inside the connector plugin’s proxy object. The
GUI plugin then disseminates the information according
to the user’s personalities.

This configuration was deployed and tested in three
separate offices. Thus, for a start three users had a chance
to use a PRIMInality client in their offices.

The PRIMIBase reference Connector plugin realised the
communication. Figure 6 depicts our research scenario.

6 Conclusions

In this paper we introduced PRIMI, a platform for
building instant messaging infrastructures. We presented
its current architecture and its reference implementation
PRIMIBase. Finally, we showed its deployment and usage
in a sample scenario with PRIMInality. Here, PRIMI
proved its conceptual strength: it allowed rapid
deployment due to the separation of concerns. The
communication plugin from the reference implementation
was used; therefore, our work could be focussed on the
development of the user interface.

The communication plugin is fully compliant with the
XMPP standard, allowing the message exchange with
both standard clients and servers—that is, the PRIMIBase
clients can be used to communicate with standard Jabber
servers, and standard Jabber clients can be used to
communicate to PRIMIBase servers. Other protocols such
as ICQ and so forth are not yet supported, but could easily
be added in a respective connector plugin.

We are convinced that there are various other research
scenarios where PRIMI would prove to be useful to
quickly build instant messaging infrastructures.

Yet, the platform shows some points for improvement
and future work. For instance, the AwarenessService can
be rearranged to use plugins itself. These awareness

plugins could provide awareness information about
operating systems events, other applications, and other
hardware events. Adding these components on demand
would improve the accuracy of awareness data.
Additionally, log handlers could be implemented as
plugins, as well, contributing to the platform’s flexibility
when the logging output is needed at other destinations.

Further additions can be made in the area of persistence
and synchronisation. In future versions we want to add a
local embedded database replacing and extending the local
file based history. Adding persistence and synchronisation
entails several new challenges concerning scalability. So
far, scalability has not been a challenge since the
PRIMIBase and PRIMInality infrastructures were only
used in typical CSCW settings of up to 15 users.

Finally, we aim to complement the PRIMI platform
and the PRIMIBase infrastructure, with a comprehensive
collection of plugins. Some of them are already under
development.

Acknowledgements

We would like to thank our colleague Tareg Egla and
the Cooperative Media Lab (CML) students A. Kunert, K.
Riege, R. Gerling, Y. Ai, A. Lahn, N. Marquardt, C.
Semisch, and M. Pfaff. We also thank the anonymous
reviewers for providing stimulating comments.

References
1 . Avrahami, D. and Hudson, S.E. QnA: Augmenting an

Instant Messaging Client to Balance User Responsive-
ness and Performance. In Proceedings of the ACM 2004
Conference on Computer-Supported Cooperative Work -
CSCW 2004 (Nov. 6-10, Chicago, IL). ACM, N.Y.,
2004. pp. 515-518.

2 . Begole, J.B., Tang, J.C., Smith, R.B. and Yankelovich,
N. Work Rhythms Analysing Visualisations of Aware-
ness Histories of Distributed Groups. In Proceedings of
the ACM 2002 Conference on Computer-Supported Co-
operative Work - CSCW 2002 (Nov. 16-20, New Or-
leans, LO). ACM, N.Y., 2002. pp. 334-343.

3 . Borghoff, U.M. and Schlichter, J.H. Computer-Sup-
ported Cooperative Work: Introduction to Distributed
Applications. Springer-Verlag, Heidelberg, 2000.

4 . Day, M., Aggarwal, S., Mohr, G., Vincent, J. Instant
Messaging / Presence Protocol Requirements (RFC
2779). http://www.ietf.org/rfc/rfc2779.txt, 2000. (Ac-
cessed 20/2/2005).

5 . Day, M., Rosenberg, J., Sugano, H. A Model for Pres-
ence and Instant Messaging (RFC 2778). http://
www.ietf.org/rfc/rfc2778.txt, 2000. (Accessed
20/2/2005).

6 . Gamma, E., Helm, R., Johnson, R. and Vlissides, J .
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, 1994.

7 . Goffman, E. The Presentation of Self in Everyday Life.
Anchor, N.Y., 1956.

8 . Greif, I., ed. Computer-Supported Cooperative Work: A
Book of Readings. Computer and People Series. Morgan
Kaufmann Publishers, San Mateo, CA, 1988.

9 . Gross, T., Egla, T. and Oemig, C. Sens-ation. Coopera-
tive Media Lab, http://cml.medien.uni-weimar.de/sens-
ation, 2005. (Accessed 10/5/2005).

10. Gross, T. and Prinz, W. Modelling Shared Contexts in
Cooperative Environments: Concept, Implementation,
and Evaluation. Computer Supported Cooperative Work:
The Journal of Collaborative Computing 13, 3-4 (Aug.
2004). pp. 283-303.

11. Handel, M. and Herbsleb, J.D. What Is Chat Doing in
the Workplace? In Proceedings of the ACM 2002 Con-
ference on Computer-Supported Cooperative Work -
CSCW 2002 (Nov. 16-20, New Orleans, LO). ACM,
N.Y., 2002. pp. 1-10.

12. Horvitz, E., Koch, P. and Apacible, J. BusyBody:
Creating and Fielding Personalised Models of the Cost
of Interruption. In Proceedings of the ACM 2004
Conference on Computer-Supported Cooperative Work -
CSCW 2004 (Nov. 6-10, Chicago, IL). ACM, N.Y.,
2004. pp. 507-510.

13. ICQ Inc. ICQ.com - Community, People Search, and
Messaging Service! http://www.icq.com/, 2002.
(Accessed 18/2/2005).

14. IETF. Instant Messaging and Presence Protocol (IMPP)
Charter. http://www.ietf.org/html.charters/OLD/impp-
charter.html, 2002. (Accessed 20/2/2005).

15. Jive Software. Smack API. http://www.jivesoftware.
org/smack/, 2005. (Accessed 20/2/2005).

16. Rao, B.R. Making the Most of Middleware. Data
Communications International 24, 12 (1995). pp. 89-
96.

17. Richards, J. and Christensen, J. People in Our Software
Queue 1 10 (2004). pp. 80-86

18. Saint-Andre, P. Extensible Messaging and Presence
Protocol (XMPP): Core (RFC 3920). http://www.ietf.
org/rfc/rfc3920.txt, 2004. (Accessed 20/2/2005).

19. Sun Microsystems. Java Logging APIs. http://java.
sun.com/j2se/1.4.2/docs/guide/util/logging/, 2002.
(Accessed 20/2/2005).

20. Sun Microsystems. Java Technology. http://java.sun.
com, 2005. (Accessed 20/2/2005).

21. Sun Microsystems Inc. Java Message Service (JMS).
http://java.sun.com/products/jms/, 2005. (Accessed
20/2/2005).

22. Sun Microsystems Inc. JXTA Technology. http://
www.sun.com/software/ jxta/ , 2005. (Accessed
20/2/2005).

23. The Mozilla Organization. Mozilla Plugins. http://
www.mozilla.org/projects/plugins/, 2005. (Accessed
20/2/2005).

24. Wackerow, D. MQSeries Primer. http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e328
52569ae006bb65f/cdce1eb0c77b2105852569900072a
3f4?OpenDocument&Highlight=0,mqseries, 1999.
(Accessed 20/2/2005).

25. Wikipedia. Instant Messenger - Wikipedia, the Free
Encyclopedia. http://en.wikipedia.org/wiki/Instant_
messaging, 2005. (Accessed 18/2/2005).

26. Wikipedia Plugin - Wikipedia, the Free Encyclopedia.
http://en.wikipedia.org/wiki/Plugin, 2005. (Accessed
20/2/2005).

27. Winer, D. XML-RPC Specification. http://www.xmlrpc.
com/spec, 1999. (Accessed 20/2/2005).

