
From PRIMI to PRIMIFaces:
Technical Concepts for Selective Information Disclosure

Tom Gross, Christoph Oemig
Faculty of Media

Bauhaus-University Weimar
Bauhausstr. 11

99423 Weimar, Germany
{tom.gross, christoph.oemig}(at)medien.uni-weimar.de

Abstract

Instant messaging platforms facilitate coordination in
workgroups by providing users with mutual information
on their presence and availability, allowing for ad-hoc
conversations with little disturbance. For this purpose
they typically capture, process, and present information
from and to the users involved. Thereby, they have to
address a fundamental trade-off: on the one hand users
want and need up-to-the-minute information about each
other, yet on the other hand the users whose information
is captured have a legitimate right for privacy and the
users whom the information is presented have a
legitimate need for avoiding frequent disruptions. In this
paper we present advanced technical concepts for
selective information disclosure. We introduce the
concept of face-based instant messaging platforms that
allow end-users on one side to flexibly integrate static
and dynamic data sources, and to easily specify their
preferences as to the data to be shared as well as the
granularity and the timing of the sharing, and on the other
side to easily specify their preferences for notification.

1 Introduction

Instant messaging platforms support the cooperation in
distributed workgroups. They facilitate coordination in
workgroups by providing users with mutual information
on their presence and availability, allowing for ad-hoc
conversations with little disturbance. For this purpose
they typically capture, process, and present information
from and to the users involved. Thereby, they have to
address a fundamental trade-off: on the one hand users want
and need up-to-the-minute information about each other,
yet on the other hand the users whose information is
captured have a legitimate right for privacy and the users
whom the information is presented have a legitimate need
for avoiding frequent disruptions.

The following little scenario should illustrate the
advantages and trade-offs of providing the members of
distributed workgroups with mutual information: imagine

a workgroup in which all the members are spread in
various offices in the same office building. Whenever,
member M1 needs to spontaneously contact colleague M2
(e.g., because M1 has a question for M2, or because M1
needs to quickly discuss an open issue with M2) M1 can
glance into M2’s office to check if it is a good time to
disrupt, if not M1 can return later. Imagine another
workgroup in which people from several organisations and
locations are involved. Spontaneous contact that fits
member M1 and M2 likewise is more difficult here.
Member M1 can call M2, but it is unclear if M2 is
present and available; member M1 can send an email to
M2, but email might involve more effort for discussing
the open issues and coming to a conclusion.

Technological support for the second workgroup could
provide member M1 with information on M2’s presence
and availability, and so forth, and would have a great
potential to make it much easier to coordinate
spontaneous social interactions. However, this technology
should also address new challenges that might arise: M2
should be able to have privacy and consequently have
information on which information is captured and means
to influence which information is captured and who will
be allowed to receive this information; and M1 should be
able to avoid unwanted disruption and to specify which
information to receive, and when and how.

This selective information disclosure is a base
requirement for social interaction—both in face-to-face
interaction and in technologically mediated interaction. As
Palen and Dourish [11] point out: ‘participation in the
social world also requires selective disclosure of personal
information. […] We seek to maintain not just a personal
life, but also a public face. Managing privacy means
paying attention to both of these desires.’.

In this paper we present the instant messaging platform
PRIMIFaces, which provides advanced technical concepts
for selective information disclosure. In the next section we
outline the detailed requirements for the PRIMIFaces
platform. We, then, describe the technical concepts of
PRIMIFaces and how they were applied to augment the
PRIMI platform. Finally, we draw conclusions and
outline future work.

2 Related Work

Traditional instant messaging platforms support
privacy by allowing users to explicitly specify their
online state (typically many systems also provide an
‘invisible’ state that allows users to disappear
completely); and support disruption avoidance by
providing a broad choice of notification mechanisms
(typically from intense audio and visual notifications to
subtle cues) [18].

Traditional instant messaging is either supported in
consumer instant messaging tools, or in enterprise instant
messaging platforms and message-oriented middleware.

Consumer instant messaging tools range from single-
protocol clients supporting one specific communication
protocol (e.g., ICQ, AOL Instant Messenger, Yahoo!
Messenger) to multi-protocol clients (e.g., Gaim, Trillian,
Adium) supporting multiple protocols in parallel [cf. 18
for an overview]. These tools are typically highly usable,
simple, and widespread. Yet, they are mostly only
available as clients to centralised servers that are run by
the inventors of the respective protocol, and they are not
radically customisable.

Enterprise instant messaging platforms and message-
oriented middleware infrastructures (e.g., IBM Lotus
Instant Messaging and Web Conferencing, Microsoft
Office Live Communications, Novel GroupWise) are
typically technically more advanced. They are comprised
of clients and servers and provide support for security,
reliability, scalability, directory integration, and so forth
in complex work environments. Message-oriented
middleware [12] infrastructures and frameworks provide
basic support for program-to-program connectivity by
message passing that can be used to build reliable and
scalable high-performance distributed applications (e.g.,
the IBM MQ Series [17], the Java Messaging Service
[14], JXTA [16]). Both—enterprise instant messaging
platforms and message-oriented middleware
infrastructures—are technically advanced, based on client-
server or peer-to-peer architectures, and highly
customisable. However, the customisation is typically
complex and can only be done by system administrators,
and not by end-users in their day-to-day interaction with
the system.

Personality-based instant messaging platforms
introduce concepts for selective information disclosure.
They allow end-users to easily create various online
personalities and to share and receive specific information
for each personality. For instance, users can have a private
personality where they disclose private data such as the
number of their private mobile phone, and a work
personality where they disclose work-related data such as
the office location and their meeting schedule. There are
only a few platforms available: The PRIMInality platform
allows users to create personalities and to assign static
data that they want to share [7]. The GrapeVine system
introduced eCards with a similar concept allowing users to
create distinct online business cards and assign specific

assess rights to individual or groups of colleagues [13].
While these platforms offer more flexibility and
customisability to the end-user, they still have their
limitations—especially with respect to easy handling for
end-users.

Face-based instant messaging platforms are a novel
concept. They allow end-users on one side to integrate
static and dynamic information sources that capture data
that might help other users to get a better impression of
their current presence and availability, and to easily
specify their preferences as to the data to be shared as well
as the granularity and the timing of the sharing. On the
other side they allow the potential authorised recipients to
easily specify their preferences for notification and
presentation of incoming information.

3 Requirements

Instant messaging platforms should provide advanced
technical concepts for human-centred computing while
preserving well-established strengths of existing
technology.

Advanced technical concepts for instant messaging
platforms should include information from the electronic
world and from the real world. They should provide a
balance for the trade-off between the one hand providing
mutual information and the other hand protecting privacy
and avoiding interruption. This trade-off was already
identified in computer-mediated communication [2] and in
computer support for mutual awareness information [9].
Bellotti and Sellen [1] point out that these challenges are
aggravated when applications become more and more
ubiquitous—that is, when they increasingly capture and
provide data from real-world sensors, not only from
electronic sensors. They point out that: mediated
interaction between people via technology is ‘prone to
breakdowns due to inadequate feedback about what
information one is broadcasting and an inability to control
one’s accessibility to others’ [1, p. 78]. They conclude
that the following two requirements are vital for adequate
mechanisms. Systems should:
• provide feedback through adequate information to the

users whose data are captured about both the
information captured and the users having access or
receiving the data

• support control through adequate assistance for the
users to specify the information they want to share and
the recipients to share their information with
Several strengths are well established in recent instant

messaging platforms. In particular, instant messaging
platforms should (cf. [6]): be open, extensible, and
flexible; allow easy and efficient extension; offer powerful
logging capabilities; be compliant with up-to-date
standards; should support various deployment modes; and
be independent of the underlying operating system.

So, concepts and platforms are needed, which provide
advanced support and novel solutions to new challenges as
well as preserve the strengths of existing approaches.

4 Towards Selective Information Disclosure

In this section we describe advanced concepts for and
the implementation of selective information disclosure.
We first discuss the concept of selective information
disclosure and faces from Goffman and then introduce the
concepts and implementation of the PRIMIFaces platform
and client.

4.1 Faces

The concept of selective information disclosure and
faces is grounded in real world sociology and social
psychology. Here, people usually control implicitly what
information to expose. According to Goffman [4] we
construct social identities or faces representing a subset of
characteristics and information about ourselves, which is
to be revealed to a certain audience—that is, we selectively
disclose and disseminate information depending on the
current temporal, spatial, and interpersonal context. For a
human-centred approach we sought to adopt this
mechanism since people are expected to be familiar with
it. Thus the concept becomes easier to comprehend and
users should have less learning effort.

Hence our approach seeks appropriate means of
feedback and control regarding Goffman’s faces for the
disclosure of personal information. In order to realise our
approach we defined the following concepts:

• Faces define specific fronts of a user and contain
information sources and recipients who are allowed to
get the information; users can mute faces—that is,
temporarily interrupt the information supply.

• Contacts are the recipients of the information; each
user can be member of any number of faces (e.g., user
A can be user B’s working colleague and at the same
time his tennis partner) and any number of contacts can
be added to a face

• Information sources refer to the origins of the
information that is to be shown in each face

• Bridges are a user’s user-face combinations in relation
to another user’s user-face combination. For instance,
user A assigns user B to his face 1 while user B
assigned user A to his face 2 (this can be described by
the bridge A-1:B-2). Bridges can be symmetrical or
asymmetrical. For instance, while user B is in user A’s
face best friends, user A does not have to be in user B’s
face best friends. Also the type and number of sources
on either side of a bridge can be symmetrical or
asymmetrical.
Faces, contacts, information sources, and bridges

represent means of control since they impact the flow of
information in selective disclosure. Additionally we
designed feedback items in the form of a three level
(contact, face, user) information exchange visualisation
and a tickertape to provide users with feedback about their
current information sharing status.

Alternate
communication
protocol plugin Client side

Adapter
XMPP

(SmackLib)

Alternate
communication

server
XMPP
serverServer side

XMPPAlternate protocol

PluginServiceLogService

ConnectorService AwarenessService

PRIMIKernel

Local history

Graphical
user interface

plugin

Alternate
user interface

plugin

Alternate
user interface

plugin

Skin

XML-RPC handler

Other handlers

Simple wrapper

Application A

Application B

Figure 1. Overall PRIMI software architecture. The grey-shaded parts are implemented a s
part of the PRIMIBase reference implementation of the PRIMI platform (cf. also [6]).

4.2 PRIMIFaces

The PRIMIFaces instant messaging platform
implements the requirements presented above.

In order to meet the general requirements for instant
messaging platforms we based PRIMIFaces on the PRIMI
platform. The PRIMI platform was presented elsewhere
[6]; here we just quickly sketch the main concepts that
need to be known in order to understand the concepts and
implementation of PRIMIFaces.

Figure 1 shows the basic software architecture of
PRIMI. Generally, the PRIMI platform covers three core
issues: data handling, communication protocols, and
application integration. These aspects are considered on
the client and server side: graphical user interfaces and
especially awareness displays are research issues on the
client side, while on the server side event histories and
other mechanisms (e.g., heuristics and algorithms to
generate prospective information from accumulated data)
are used to enhance communication and collaboration. The
platform is used to build clients and servers that support
existing and custom protocols for communication. User
interfaces and communication protocols are deployed in
the Java programming language [15] as plugins [19] as
part of a central infrastructure that offers all necessary
services, especially for plugin handling and logging. Most
communication inside PRIMI and with other applications
and environments outside of PRIMI is done via XML-
RPC [20]. A great strength of XML-RPC is that it can be
combined with Web-servers and then can work via HTTP
on port 80 and does not interfere with firewalls.
PRIMIBase constitutes the PRIMI reference
implementation of a plugin-based infrastructure.

In order to provide advanced technical concepts the
PRIMIFaces platform faces need to be introduced. Every
user has at least one face, the default or public face. Faces
get assigned contacts and sources. Bridges need to be
stored; a storage format has to be found. Additionally,
information sources need to be introduced. We
distinguish:
• Sources that expose information that is manually

provided by users (static sources)
• Sources that capture information using sensors (either

software sensors capturing information from computer
operating systems and applications, and hardware
sensors capturing information from the real-world
environment)

• Sources that create and expose information based on
algorithms without any user input or sensing (dynamic
sources).
Sources either provide their information in an active or

passive operational mode (push or pull sources).
Furthermore, information can come from an internal
source (either user input or results from algorithms), or
from an external source (a sensor outside the platform).
Users may use an arbitrary number of sources. Source
handling, data storage destinations, and formats need to be
found in order to define where and how to store the data.
Table 1 provides an overview of source types and
operational modes.

Sources are implemented as part of the core platform.
Like user interfaces and connectors, sensor sources are
realised as external plugins that can be dynamically added
to the platform. Sources with user or algorithmic input
are implemented as internal classes of the platform.

Source information destination

PushSource A

SensorListener

SourceListener

PushSensor PullSensor

PushSource B
with dynamic
information
generator

PullSource A

getValue()

PullSource B
containing static

information

getValue() getValue()

SensorMessage

SourceMessage

External Internal External Internal

Push Pull

Figure 2. Overview of internal and external push and pull sources.

Information type
Internal External (i.e.,

sensor plugin)
P

u
ll

Static information
(e.g., an email
address or
telephone number)

CPU sensor,
application
sensor, nearby-
people sensor

O
pe

ra
ti

on
al

m

od
e

P
us

h

Dynamic
information
(algorithm-based
information
generators)

Mouse idle sensor

Table 1. Source types and operational modes.

Pull sources need to be asked for their values, while
push sources inform registered listening components via a

callback interface (SourceListener interface) in case
of any change to their values. Push sources can be based
on dynamic information generators that create their values
based on algorithms, or on push sensors that deliver their
v a l u e s v i a a n o t h e r c a l l - b a c k interface
(SensorListener interface). Sensor components are
wrapped into source objects in order to provide a common
interface for source handling. Figure 2 depicts an
overview of the workings of internal and external push and
pull sources.

Overall, there are six implementations of the source
interface depicted in Figure 3. The SourceSensor-
Impl class provides a wrapper for push and pull sensors
(external sources). Static information sources mentioned
above are implemented as SourceInternalStatic-
InfoImpl, dynamic sources are realised as Source-

Figure 4. Sources are assigned handlers and formats in order to define the destination and
appearance of their data.

Figure 3. Source interface and implementing classes.

InternalDynamicInfoImpl. Figure 3 also shows
further internal sources:
• SourceInternalMessageSensorImpl: mes-

sage data sent via instant messaging can be perceived as
source data as well; that is why we implemented this
class that provides this information as source

• SourceInternalPresenceSensorImpl: as for
instant messages the same accounts for instant
messaging data on the users’ online states; this class
provides this information as source

• SourceInternalPresentitySourceImpl:
this implementation of the Source interface
represents the sources of the other users (the contacts or
presentities)
The source classes also take care of logging their data.

In the case of sensor sources the source class acts as a
proxy, the underlying sensor class does not know
anything about the logging mechanisms. This approach is
also used for the connector plugins where communication
and status data are logged transparently, yet for a different
purpose. Sources can be assigned handlers and formats in
order to define the logging data’s destination and
appearance. Thus, the concept of sources becomes generic
enough to be used in a multitude of scenarios as part of
the PRIMIFaces platform.

Figure 4 shows how Format and Handler classes
are assigned to sources. The formatting follows the
command software pattern [3]. Yet, the invoker is the
SourceImpl itself: when its getValue() method
(pull case) or a push event occurs (push case) the
SourceImpl class calls its Format class’ format()
method to output the values as desired. The output is then
handed over to the Handler class’ publish method.
As it can be seen in Figure 4 the Handler classes and
the entire logging is based on Java’s Logging API [8].

In order to adapt sources for different settings simply
new Handler and Format classes need to be provided.
The conceptually required muting is realised by switching
off loggers inside the SourceImpl classes.

For using sources within PRIMIFaces we finally set
up a service, the Source service. It acts as factory

creating or acquiring source instances. Handler and
Format classes need to be provided here as parameters.
The service belongs to PRIMIFaces’ set of high-level
services and is initialised when PRIMIFaces starts.

In PRIMIFaces faces are stored as a compound of
username and face name with a dot in between (e.g.,
userA.face1). Sources and the data they produce are
stored in a sensor-based environment called SensBase that
was develop with the Sens-ation platform [5] in XML
format. SensBase provides a generic infrastructure mostly
written in the Java programming language. It facilitates
the registration and management of hardware and software
sensors, the capturing and storing of sensor values via
these sensors, and the retrieval of information on sensors
and present and past sensor values via various gateways
(e.g., Web Services, XML-RPC, Sockets, CGI). Basic
building blocks for data storage are sensors and locations.
The latter basically tag a collection of sensors that have
something in common, usually a physical location.

We developed a handler for sending data to SensBase
and a format, which took care of the data’s layout in
XML. Both are provided to source class instances retrieved
from PRIMIFaces’ source service. Additionally, for the
way back, a class was implemented that converts data back
from flat XML retrieved from SensBase into objects.

Bridges are realised using dictionaries that are
specialised SensBase sensors containing data of the format
shown in Figure 5. A dictionary holds a user’s settings
about how contacts are assigned to faces. The example in
Figure 5 describes two faces containing two users each. In
order to build a complete bridge the application has to read
the current user’s dictionary. For each contact found, it has
to look up the current user’s name as contacts in their
respective dictionaries. This way the application also finds
out about the faces’ name in order to retrieve all sources
from. These dictionaries are created and updated
automatically, based on the users’ preferences. The users
can create faces, and add contacts directly in the
PRIMIFaces client (cf. Figure 6 below). It is also the
users’ choice which information sources to add and to
check the sources and their combination is of help to the

Figure 5. The bridge between user A and user B (UserA.Face1:UserB.Face2).

contacts who receive this information.
With sources and bridges implemented at the level of

the core platform we still need to focus on the client and
its user interface. On the client side faces are a central user
interface issue, since easy and intuitive user interface
mechanisms for feedback and control are a challenge.
Figure 6 shows a screenshot of the PRIMIFaces client’s
user interface. A pie chart serves as visualisation for faces.
Contacts and sources can be added simply by using the
buttons on the right side or via the menu bar.

So far, only a fat client for the computer is available.
While a mobile client would certainly be interesting to
experiment with, it also entails several new challenges
(e.g., how to provide good interaction design for creating
and maintaining faces, adding and removing contact,
adding and removing information sources).

5 Conclusions and Future Work

More than merely status information is needed to
overcome the two major problems in computer-mediated
communication, disembodiment and dissociation. For
addressing these challenges we introduced the concept of
faces from Goffman and presented the concept and
implementation of advanced selective information
disclosure in PRIMIFaces. This advanced selective
information disclosure provides easy means to the users to
decide what to share with whom. This goes beyond other
approaches that simply provide some additional
information to contact initiators (e.g., ContextContacts is
a mobile phone system that nicely provides initiators of
phone calls with information on current location and other

information on the call recipient’s phone, yet it is also
limited to these types of information and only allows
general disclosure without faces [10]).

With the setup presented we are able to provide more
information, which is to be disclosed selectively. We
additionally meet the requirements of asymmetry: Based
on dictionaries user may assign other users in an
asymmetric manner; sources may be added in an arbitrary
manner on either side.

Due to the use of formats and handlers with sources we
allow to easily switch and use different storage
infrastructures where we used SensBase as the default.
Developers simply need to create a new handler, which
defines the new destination and calls its provided methods
to store values. The format only has to be adapted in the
format class in order to be used with another
infrastructure.

However, the concepts presented have some limitations
in their current state. For example, users may switch the
computer they use. Yet, a different set of sensor plugins
might be installed on either location—that is, a user
might provide more, less, or even different information
depending on the equipment used. This issue has not been
covered yet.

Another issue is the handling of variations of precision
of sensor values. For numeric values this might be an
easy case to increase or decrease precision (e.g., a 4.5
becomes 5). Using more semantic values the issue
becomes increasingly difficult. For instance, for a user
who wants to share location information, but in a coarse-
gained fashion, generalising the current location from
Weimar to Germany can become a challenge.

Figure 6. The PRIMIFaces user interface.

Further, in our approach we provided dynamic sources
that generate their information based on algorithms. It is
not completely clear what this can be used for. A possible
scenario could be the generation of fake data in order to
pretend a certain situation (e.g., I appear to very busy
though I am not). This needs to be explored.

Last but not least, the way back from the storing
infrastructure remains an issue: we realised it as part of the
user interface plugin since it is the instance that knows
about the destination and format.

From a social science perspective the consequences of
asymmetrical information provision is an open question.
In the current platform and its clients user get feedback on
the information they are sharing and have control over the
selection and granularity of the information to share. The
users do not have feedback on the overall situation of the
other users—that is, they only receive the information
that is shared in faces. They might receive all information,
or they might miss information. In the latter case the
information might be missing, because the other users
cannot provide it (e.g., simply because they do not have
the software and hardware infrastructure to capture and
process the data when they are online, but travelling), or
because the other users have deliberately excluded
information sources from the faces.

Acknowledgments

We would like to thank our colleague Tareg Egla and
the Cooperative Media Lab (CML) students—especially
Tim Gollub, Tobias Langlotz, Mario Urbina, and Stefanie
Zollmann—for contributing to the concepts and
implementation of this work. We also thank Thilo Paul-
Stueve and the anonymous reviewers for providing
stimulating comments on earlier versions of this paper.

References

1 . Bellotti, V. and Sellen, A. Design for Privacy in Ubiqui-
tous Computing Environments. In Proceedings of the
Third European Conference on Computer-Supported
Cooperative Work - ECSCW'93 (Sept. 13-17, Milan,
Italy). Kluwer Academic Publishers, Dortrecht, NL,
1993. pp. 77-92.

2 . Coutaz, J., Crowley, J.L. and Berard, F. Eigen-Space
Coding as a Means to Support Privacy in Computer-
Mediated Communication. In IFIP TC13 International
Conference on Human-Computer Interaction -
INTERACT'97 (July 14-18, Sydney, Australia). Chapman
& Hall, London, UK, 1997. pp. 532-538.

3 . Gamma, E., Helm, R., Johnson, R. and Vlissides, J .
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, 1994.

4 . Goffman, E. The Presentation of Self in Everyday Life.
Doubleday Anchor Books, N.Y., 1959.

5 . Gross, T., Egla, T. and Marquardt, N. Sens-ation: A
Service-Oriented Platform for Developing Sensor-Based

Infrastructures. International Journal of Internet Proto-
col Technology (IJIPT) 1, 3 (2006). pp. 159-167.

6 . Gross, T. and Oemig, C. PRIMI: An Open Platform for
the Rapid and Easy Development of Instant Messaging
Infrastructures. In Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Ap-
plications - SEAA 2005 (Aug. 30-Sept. 3, Oporto, Portu-
gal). IEEE Computer Society Press, Los Alamitos, CA,
2005. pp. 460-467.

7 . Gross, T. and Oemig, C. PRIMInality: Towards Human-
Centred Instant Messaging Infrastructures. In Mensch &
Computer - 5. Fachuebergreifende Konferenz - M&C
2005 (Sept. 4-7, Linz, Austria). Oldenbourg, Linz,
2005. pp. 71-80.

8 . Hamilton, G. Java Logging APIs. Sun Microsystems
Inc., http://jcp.org/aboutJava/communityprocess/
review/jsr047/spec.pdf, 2000. (Accessed 14/3/2006).

9 . Hudson, S.E. and Smith, I. Techniques for Addressing
Fundamental Privacy and Disruption Tradeoffs in Aware-
ness Support Systems. In Proceedings of the ACM 1996
Conference on Computer-Supported Cooperative Work -
CSCW'96 (Nov. 16-20, Boston, MA). ACM, N.Y.,
1996. pp. 248-257.

10. Oulasvirta, A., Raento, M. and Tiitta, S. ContextCon-
tacts: Re-Designing SmartPhone's Contact Book to
Support Mobile Awareness and Collaboration. In Sev-
enth International Symposium on Human-Computer In-
teraction with Mobile Devices and Services - MobileHCI
2005 (Sept. 19-22, Salzburg, Austria). ACM, N.Y.,
2005. pp. 167-174.

11. Palen, L. and Dourish, P. Unpacking 'Privacy' for a Net-
worked World. In Proceedings of the Conference on Hu-
man Factors in Computing Systems - CHI 2003 (Apr. 5-
10, Minneapolis, Minnesota). ACM, N.Y., 2003. pp.
129-136.

12. Rao, B.R. Making the Most of Middleware. Data Com-
munications International 24, 12 (1995). pp. 89-96.

13. Richards, J.T. and Christiansen, J. People in Our Soft-
ware. ACM Queue 1, 10 (Feb. 2004). pp. 80-86.

14. S u n . J a v a M e s s a g e S e r v i c e (JMS).
Sun Microsystems Inc., http://java.sun.com/products/
jms/, 2005. (Accessed 15/3/2006).

15. Sun. Java Technology. Sun Microsystems Inc.,
http://java.sun.com/, 2006. (Accessed 15/3/2006).

16. Sun. JXTA Technology. Sun Microsystems Inc.,
http://www.sun.com/software/jxta/, 2006. (Accessed
15/3/2006).

17. Wackerow, D. MQSeries Primer. http://www.redbooks.
ibm.com/redpapers/pdfs/redp0021.pdf, 1999. (Accessed
15/3/2006).

18. Wikipedia. Instant Messaging - Wikipedia, the Free En-
cyclopedia. http:/ /en.wikipedia.org/wiki/Instant_
messaging, 2005. (Accessed 9/3/2005).

19. Wikipedia Plugin - Wikipedia, the Free Encyclopedia.
http://en.wikipedia.org/wiki/Plugin, 2006. (Accessed
15/3/2006).

20. Winer, D. XML-RPC Specification. http://xmlrpc.
scripting.com/spec, 1999. (Accessed 15/3/2006).

