
LocaRhythms:
Real-Time Data Mining for Continuous Detection and Prediction of Stays

Mirko Fetter, Tom Gross
Faculty of Media

Bauhaus-University Weimar
99423 Weimar, Germany

<firstname.lastname>(at)medien.uni-weimar.de

Abs t r a c t—In distributed teams information on
each other’s whereabouts is  an important
prerequ i s i t e  for  e f f i c i en t  communica t ion ,
coordination, and cooperation. In this paper w e
present LocaRhythms—a novel approach f o r
continuous detection and prediction of users’
stays. This is achieved by continuous capturing
of position data, by real-time data mining w i t h
an innovative combination of machine l e a r n i n g
algorithms, and by anytime presenting stays and
follow-up stays.

Ke yw o r d s— C o m p u t e r - S u p p o r t e d  C o o p e r a t i v e
Work; Mobile Computing;  Real-Time Data
Mining; Continuous Detection and Prediction.

I. INTRODUCTION
The members of distributed teams need information on

each other’s presence and availability as an important
prerequisite for efficient communication, coordination, and
cooperation [10]. For instance, the users’ whereabouts are
an essential part of this information, and can help other
users to decide where somebody should be contacted now
or later.

The users’ whereabouts can be entered manually (e.g.,
in many social software systems such as FaceBook [6] and
Twitter [28] users frequently make manual entries).
Alternatively, the whereabouts can be detected
automatically (e.g., via GPS, or GSM). These approaches
have the disadvantage that they either entail effort for the
users (if they have to do it manually), or that they are of
limited value to users (if they only present the GPS
coordinates with latitude and longitude in a very specific
point in time).

In this paper we present LocaRhythms—a novel
approach for continuous detection and prediction of users’
stays. The up-to-the-moment models of this approach can
generate valuable information for users and their
proximity to each other. For instance, if user A is moving
to user B’s location, user B can get an automatic request
to wait. LocaRhythms can, at any given time, produce the
accurate stay of a user and the most probable next stay the
user will move to. This is achieved by continuous
capturing of position data, by real-time data mining with
an innovative combination of machine learning
algorithms, and by anytime presenting stays and follow-
up stays.

The paper is structured as follows. First we introduce
the LocaRhythms concept consisting of continuous
capturing, real-time data mining, and anytime presenting.
Then we present the LocaRhythms implementation with
the GPSCoordsSensLogger, the LocaRhythmsServer, the
LocaRhythmsClient. Finally, we discuss related work and
draw conclusions.

II. LOCARHYTHMS CONCEPT
The following requirements for the LocaRhythms

concept are user-driven (see [11] for a good overview
paper). Basically a mobile device with positioning
capabilities should be used to get information on users’
whereabouts. By means of machine learning techniques a
user’s whereabouts should be detectable and predictable for
any given time, based on the respective user’s movement
patterns. This information should be useable, for instance,
for arranging meetings, for estimating each other’s
availability, or for enriching the users’ feeling of
connectedness over distance.

For describing the LocaRhythms concepts we define
the following terms, based on Merriam-Webster’s
dictionary [16], with some adaptations: space  is ‘a
boundless three-dimensional extent in which objects and
events occur and have relative position and direction’, in
our notion it exists per se; location is ‘a position or site
occupied or available for occupancy or marked by some
distinguishing feature’, in our notion it can be seen as a
sub-space and exists per se (e.g., a restaurant, a shopping
mall); coordinates or geographic coordinates or GPS
coordinates are the latitude and longitude with an optional
altitude of a point in a location in a space, in our notion it
does not exist per se but can be measured and detected;
trace is ‘a mark or line left by something that has
passed’, in our notion it typically consists of a set of
coordinates that can be measured and detected and
combined; significant place is a location, in our notion it
is of importance to users expressed by the duration and
frequency of past visits; and position is a ‘point or area
occupied by a physical object’, in our notion it is the
current coordinates of a specific user and can be measured;
and stay is ‘a residence or sojourn in a place’, in our
notion it consists of a set of the most current positions.

Based on these notions we can now describe the
concepts consisting of continuous capturing, real-time
data mining, and anytime presenting.



A. Continuous Capturing
A first step is to learn what places are of significance

to a specific user and how these places can be
distinguished from the space that is just transited by the
user. A widely used approach for identifying significant
places is to record the users’ movement with position-
tracking devices and to extract the significant places from
the collected data. The approaches mainly vary in the way
the coordinates are captured and the significant places are
inferred [2, 14, 15, 20]. In LocaRhythms we decided to
use GPS devices for tracking users’ coordinates, since this
allows us to find significant places with a fair accuracy in
a wide area without the need to setup environments and
infrastructures. Also, GPS does not have limitations of
other technologies such as: location technologies based on
radio frequency that only cover a small area with good
accuracy (e.g., those based on the IEEE 802.11, or
Bluetooth), or location technologies based on GSM that
cover a wide area with an insufficient accuracy (e.g., GSM
positioning via the Cell ID). Current GPS devices have
additional advantages for our approach: they are small
enough to be carried around in the pocket, offer worldwide
positioning out doors and are affordable. In some recent
mobile phones GPS chips are built in—so, no additional
hardware is needed. The most recent generation of GPS
chips (e.g., the SIRFstarIII [23]) have the strengths to go
through windows and thin walls and can, therefore, be
partly used for indoor positioning. So, with the
SIRFstarIII used in LocaRhythms data can be captured in
our offices and in some private and public locations.  

Still, GPS has—despite the fact that we were using
SIRFstarIII in LocaRhythms—some limitations in terms
of imprecision of the captured data. First, the GPS
coordinates and traces recorded indoors have a greater
amount of outliers due to reflections of the signal. So, the
traces need to be pre-processed and filtered to minimise the
number of outliers. Second, GPS is in some conditions
prone to errors; for instance, in LocaRhythms sometimes
no proper GPS data can be captured, because there is no
signal indoor (in which case null-values are retrieved),
because the GPS device runs out of battery (in which case
no data are retrieved), or because the users forget to turn
the tracking on (in which case no data are retrieved). So,
the system has to be robust enough to deal with periods
were no data can be captured.

B. Real-Time Data Mining
The real-time data mining works as follows: first, we

detect significant places; and second, we build prediction
models that allow statements on the most probable stay of
a user and the most probable following stay.

Detecting Significant Places
In order to detect and infer the significant places from

the traces of the captured GPS coordinates, we tested two
clusterers: simple k-means because of its popularity, and
expectation-maximisation because of its strengths over
simple k-means. Simple k-means is easy, but needs the

number of expected clusters (i.e., the number of
significant places) as an input parameter, which is not
adequate for a flexible system that should learn and grow
in the number of significant places identified. Expectation-
maximisation allows for a flexible number of clusters. A
considerable drawback of both algorithms is that they are
not considering the time stamp of the GPS coordinates.
Consequently, when applied to a set of coordinates, the
importance of places is underestimated compared to
transits, which can forge the calculated centroids of the
detected significant places—for instance, when the traces
of a user often cross at a certain location, this location
will also be recognised as a significant place.

We, therefore, decided to omit these standard clustering
algorithms and to use a specific algorithm: the time-based
clustering algorithm introduced in [13]. The algorithm
takes GPS traces and works sequentially through the
coordinates contained in order to identify the significance
of a place defined by the length of time spent there. If a
user stays in a defined radius for longer than a defined
threshold for the first time, this location becomes a
significant place. When a user stays in a space where
significant places have already been identified, the fusion
algorithm checks for overlaps. If the new location
overlaps with a known location, the algorithm merges the
two locations and calculates the centroid of the new
merged significant place. If not, a new significant place is
created.

In order to better deal with periods in which no proper
GPS data can be captured (especially if the signal is lost
and when due to this interruption null-values are captured)
we extended the algorithm. The extended algorithm stores
the last proper position and coordinates its coordinates
with the first coordinates that are captured after the
interruption and applies heuristics about their relationship.

If the signal is regained near the position it was lost,
the algorithm assumes that the person stayed in a covered
area (e.g., a building) that shielded the signal and that this
is a significant place for the user (e.g., in our test data,
this heuristic could identify the university main building,
and the shopping mall nearby as two distinct significant
places).

The comparison of the two locations needs some
tolerance towards deviations. This was for two reasons.
Firstly, when users went in a covered area, the signal was
lost immediately, but when they left the area it could take
some time until the GPS device regained signal (typically
some 100 meters away from the exit). Secondly, when
users went in a covered area through one entrance, but
exited through another (typically from a shopping mall).
We built a tolerance heuristic that considers the users’
movement through a covered area as well as out of a
covered area. For the time no signal is retrieved, it
incrementally grows the temporary radius of a significant
place with a fraction of the human walking speed until it
reaches a defined maximum radius (our practical
observations revealed that a maximum radius of 500
meters is best). If the user exits the covered area within
the range, then it is considered a significant place (e.g., a



shopping mall); otherwise, it is considered a transit (e.g.,
an urban canyon or a long tunnel with limited or no GPS
coverage). With this LocaRhythms tolerance heuristic we
were able to detect a considerable number of significant
places that would be lost otherwise. So with this setup we
were able to get a satisfying set of significant places from
the test data of the two authors and of a lab student
collected during their everyday routines over different
periods.

Predicting Significant Places
In order to predict the place a user will most likely

visit at a given time, a statistical model is needed. Hidden
Markov Models (HMM) [21] are often used for different
modelling and classification problems and proved to work
good with time series data. Among the fields were HMMs
have been applied successfully are, for instance, speech
[12], activity [22] and gesture recognition [29]. Since the
basic requirements for predicting significant places are
similar, we chose HMM for the prediction of the next
most likely place a person visits at a specific time based
on the sequences of visits of this person.

In our setting the algorithm needs a user’s stays as
input. A user’s stay is detected when identifying
significant places. When a significant place is identified,
the algorithm not only stores the significant place, but
also captures the time the stay began, and the time the
stay ended and stores these times together with the
coordinates of the significant place’s centroid. Based on
theses stays LocaRhythms builds individual Hidden
Markov Models for each time span: for each month of a
year, for each day of a week, and for each hour of a day.
Each of these 43 models is continuously trained with
observation sequences. Each time a stay at a significant
place is inferred, the time of this stay is split up into
time-slices of 100 seconds each. Based on these time-
slices, the 43 sets of observation sequences are
continuously built and updated depicting the transitions
between places for each time-slice. Finally, each set of
observation sequence is used to compute the state
transition probabilities of an HMM, where the HMM
states represent the significant places, and the HMM
transition probabilities represent the transition
probabilities between places.  Based on these models,
LocaRhythms makes a range of predictions: using basic
weighting algorithms between the individual models,
statements on the most probable place at a given hour for
a given day as well as the next probable states following
this stay can be made.

C. Anytime Presenting
In order to present the results to the users

LocaRhythms uses Google Earth [8] for a visual access to
the whereabouts of a user’s peers. Please note, that in
order to protect the users’ privacy, users need to explicitly
confirm that they want to share the data about their
whereabouts.  The map-based visual presentation allows
users to easily grasp significant places and stays, which
would be considerably harder with text-based presentations

of the raw GPS coordinates. Overall, LocaRhythms
provides four presentation types:

The two basic presentation types of LocaRhythms are
the presentations of the ten most important significant
places of a user with the respective importance: one based
on the number of visits; and the second based on the
overall duration of stays. LocaRhythms provides a view in
Google Earth where for both presentation types the places
are presented by spheres, with their radius representing
their respective importance.

The two advanced presentation types of LocaRhythms
are the presentations of places a user is most probable at a
given time (cf. Figure 1). The LocaRhythms client
allows users to specify a time span they want predictions
for. With this time span, LocaRhythms can generate two
basic queries and send them to the server: The first bar
visualisation query with the specified hour and weekday
provides the most probable place for this period as a white
bar in the map and a set of the next probable states also as
bars, depicting their probability by the height of their
darker filling colour. The second cylinder visualisation
query allows selecting an interval in the form of two
weekdays and the start and end hour. The result of this
query is a map with cylinder drawn into it at the
significant places of the user, subdivided in 24 equal
segments. Each segment represents an hour of the day and
the darkness of a segment indicates the probability of the
user staying at this place at that specific hour.

Figure 1. LocaRhythms advanced presentation types with bar
visualisation and cylinder visualisation in Google Earth.



III. LOCARHYTHMS IMPLEMENTATION
The LocaRhythms implementation consists of the

GPSCoordsSensLogger  subsystem for continuous
capturing of the GPS traces of a user, the LocaRhythms-
Server subsystem for real-time data mining on these
traces, and the LocaRhythmsClient subsystem for
presenting the significant places (cf. Figure 2). The
implementation is based on Java SE 5.0 [27] and J2ME
[25] and optimised to run on Mac OS X 10.4.9 on a
standard Macintosh PowerPC G4 1.8 Gigahertz.

A. Continuous Capturing in the
GPSCoordsSensLogger
In order to facilitate the collection of GPS data the

GPSCoordsSensLogger subsystem was implemented. By
supporting a variety of devices we make the collection of
data as convenient for users as possible. A version for
PDAs and mobile phones supporting MIDP 2.0 and
CLDC 1.1 was implemented in J2ME (cf. Figure 3) and a
second version for laptops was implemented in J2SE (cf.
Figure 4). Both versions collect GPS data and save the
data in a log file or directly send them to SensBase via
XML-RPC [30] if the device is online.

In both versions the GPSLocation  component
continuously reads the data from the GPS mouse—in our
case an Royaltek RBT-2010 with a SIRFstarIII
chipset—via Bluetooth using Java’s Bluetooth API [24]
and parses the NMEA sentences [18] for GPS coordinates
in WGS84-Format [17] and hands back a Qualified-
Coordinates object to the GPSCoordsSensLogger class
in a five second interval. Each QualifiedCoordinates
instance holds the latitude, longitude, and altitude
(Lat./Lon./Alt.) values as well as the values for horizontal
and vertical dilution of precision (HDOP/VDOP) as an
indicator for the impreciseness of the measured position
based on the satellites’ position. The J2ME version is

extended with the LAPILocation component for mobile
phones supporting the Location API [25] in order to
access the built-in GPS capabilities. The LAPILocation
class hands back the current position as Qualified-
Coordinates to the GPSCoordsSensLogger every five
seconds. When online, the GPSSensor component directs
each GPS coordinate packed into SensorEvent to the
SensBase subsystem of the LocaRhythmsServer via
XML-RPC.  In both versions the GPSCordsSensGUI
component allows the user to monitor the capturing. In
J2SE the GUI is based on Swing, in J2ME the GUI is
based on the MIDP GUI model.

B. Real-Time Data Mining in the LocaRythmsServer
For the real-time data mining in the LocaRhythms-

Server subsystem the SensBase subsystem takes the
incoming streams of SensorEvent from the GPSCoords-
SensLogger and builds up chains or directed non-cyclic
graphs of InferenceEngines (IE) that execute individual
logical modules of the overall generation of models. The
SensBase subsystem is implemented with the Sens-ation
platform [9]. The Sens-ation platform offers mechanisms
to easily integrate new IEs and to build up connections
between instances of IEs at runtime. In order to facilitate
the building of the connections, an instance of the
respective IE is registered to listening for incoming events
of specified sensors and writes out the inferred results to a
new sensor as SensorEvent. The IngredientsID of
SensorEvent  acts as a pointer to the SensorEvent
determining the result. This allows later reproduction of
inference chain. In LocaRhythms these mechanisms set up
a network of interdependent IEs for analysing incoming
position data. Several IEs are part of the
LocaRhythmsServer: InferenceEngineSignifi-
cantPlaces and InferenceEnginePlaceFusion detect
significant places based on time-based clustering;
InferenceEngineJAHMMLocation predicts locations

Figure 2. LocaRhythms component diagram.



based on HMM; and InferenceEngineCountingPlaces
as well as InferenceEngineCountingTimes aggregates
stays according to the number of visits and the overall
duration of stay based on calculations.

For all users a graph of IEs is instanced to process
their traces. It starts with the InferenceEngine-
SignificantPlaces. The InferenceEngineSigni-
f i c a n t P l a c e s  is notified by  SensBution’s
InferenceEngineHandler  every time a  new
SensorEvent containing GPS coordinates is sent to the
observed sensor by the GPSCoordsSensLogger. As
LocaRhythms uses the Weka toolkit for data mining [31]
the first step in the IE’s notify()-method is to transfer
each SensorEvent into a Weka instance object for further
processing. In the next step the incoming coordinates are
filtered using the PRIMIGPSFilter (an adapted version of
Weka’s RemoveWithValue filter) to remove each instance
with a HDOP value greater then 5, as they are considered
to be too imprecise. The remaining coordinates are added
to the TimeBasedClusterer  (the LocaRhythms
implementation of the time-based clustering algorithms as
proposed by Kang et al. [13], as a Weka extension). With
a threshold for time t and distance d, the algorithms filters
out the places with the radius d a user stays for time t and
discards the transits between them. Based on Kang et al.
we chose 300 seconds for t, but slightly decreased the
value for d to 15 metres based on the better accuracy of
our GPS compared to the WiFi positioning of Kang et al.

For the tolerance heuristic the TimeBasedClusterer
slowly increments the distance d with a fraction (i.e., one
fifth) of the walking speed at 1 metre per second resulting
in 0.2 metre per second up to a threshold of 500 metres is
reached for d. So, for instance, if the GPS signal is
retrieved after 15 minutes, d will have grown from its
original 15 to 195 metres.

When a new significant place is detected the
coordinates of its centroid are written out as a
SensorEvent to the specified output sensor together with
the timestamps when this place was visited and left. This
sensor is observed by an instance of the Inference-
EnginePlaceFusion. This IE checks if a new discovered
significant place is within d/3 of a previously detected
place. If the distance is smaller the two places are merged
and the centroid is updated. This happens every time a user
returns to a previously found place. Otherwise a new place
is added to the vector of relevantPlaces and a unique
ID, the placeID, is generated for this place. In both cases
the updated or new relevant place is written out to the IE’s
output sensor together with the IngredientIDs of each
previous SensorEvent that are included.

Subsequently the InferenceEngineJAHMMLocation
is notified by the output of the InferenceEnginePlace-
Fusion. Figure 5 depicts an activity diagram of the
InferenceEngineJAHMMLocation. The Inference-
EngineJAHMMLocation builds up a series of HMMs based
on JAHMM—a free HMM implementation in Java
[7]—and manages them in the class JAHMMLocationHMMs
that acts as the data store. When a SensorEvent arrives
the IE retrieves the beginning and end of the last stay via
the IngredientID. Stays that last over two or more
hours are split into smaller portions of one hour each and
converted into JAHMMLocationStays, consisting of the
placeID and the beginning and end time of a stay. This
information is then added to a JAHMMLocationModel for
the month, the weekday, and the hour that the stay took
place for each JAHMM-LocationStay. If the respective
model does not exist, it is created beforehand.
Furthermore, a JAHMMLocation-Coordiantes is added to
the model and links the placeID to a specific GPS
coordinate. If the placeID already existed, the coordinates
are overwritten with the new coordinates that reflect the

Figure 3. GPSCoordsSensLogger on a mobile phone.

Figure 4. GPSCoordsSensLogger on a notebook.



fine displacement caused by the previous merging of the
centroids. The JAHMMLocation-SequenceGenerator now
updates the set of observation sequences for all three
updated models by splitting up the stays in smaller
fractions and generating seq-files that reflect the locations
visited in a period by a line of placeIDs separated by
semicolons (cf. Figure 6). Finally, a HMM model is
generated based on the seq-file by the SequenceToJAHMM-
LocationModelConverter using JAHMM. When a
query is sent to the IE, the probabilities are fetched from
the appropriate models and a simple weighting function
combines them to the most probable state as described in
more detail in section C.

Furthermore, the output sensor of the Inference-
EnginePlaceFusion notifies the InferenceEngine-
CountingPlaces and the InferenceEngineCounting-
Times for an overall ranking of the significant places. The
InferenceEngineCountingPlaces compares the
incoming placeID  of a significant place with a
HashTable of the revisited significant place. If the
placeID is in the HashTable, the variable counting the
visits to this significant place is incremented. If a new
placeID is received, the significant place is added to the
H a s h T a b l e . This way the InferenceEngine-
CountingPlaces generates a HashTable on how often
each significant place is visited that is continuously

updated. In much the same way the InferenceEngine-
CountingTimes calculates the overall time a user stays at
a significant place. When the IE is notified it can retrieve
the beginning and end of the last stay at this place via the
IngredientIDs and calculate the duration of the last stay.
This duration is added to the overall duration of stays at
this place in a HashTable the IE manages. If a user visits
this place for the first time, the place and the duration of
the last stay are added to this HashTable. Both IEs output
an updated, sorted list of places with either the number of
visits to this place or respectively the overall duration of
stays at this place.

Each of the previously described IEs stores their
output into SensBase as SensorEvent. Most of the IEs
described here, additionally rely on an internal model that
is not only reflected by the input and output values, but
computed over time and needs to be available at runtime.
For fault tolerance, each IE serialises its internal state to a
file. We integrated a mechanism that can—depending on
the special needs of each IE—serialise a whole IE to a file.
When SensBase is restarted after a downtime, and the IE
are re-instantiated, the system restores the last serialised
state of each IE from file. Each IE can trigger the
serialisation individually in specific time intervals or on
basis of incoming or outgoing SensorEvents. This way,
the IE can assure that the current state is always available

4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;2;2;2;2;2;2;2;2;2;2;2;
4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;4;2;2;2;2;2;2;2;2;2;
4;4;4;4;4;4;4;4;4;4;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;
7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;7;2;2;2;2;2;2;2;2;

Figure 6. Four observation sequences for the 11 o’clock model representing the times slot of 11 to 12 am on 10, 11, 12, and 13 February 2009.

Figure 5. InferenceEngineJAHMMLocation activity diagram.



in event of a system downtime.

C. Presenting Anytime in the LocaRhythmsClient
For the presentation to the user a simplified GUI

allows to generate queries to the LocaRhythmsServer.
The results of these queries are passed back to the
LocaRhythmsClient in form of a SensorEvent. Based
on this answer, a file in the Keyhole Markup Language
(KML) format [19], is created, that visualise these results.
KML is an XML-based language that was developed to
define annotations and visualisations to maps that can be
viewed in Web-based maps or in virtual globe programs,
such as Google Earth. In order to facilitate the
visualisation with KML we first generated a KML API
based on the KML schema files with means of the Java
Architecture for XML Binding (JAXB) [26]. Based on this
API a class KMLWriter generates KML files visualising
the results in form of 3D objects, which act as markers for
those significant places that are relevant to a specific query
in Google Earth. The KMLWriter is capable of three types
of visualisation: SphereVisualisation, BarVisuali-
sation, and CyclinderVisualisation. The Sphere-
Visualisation takes a number of GPS coordinates, each
with a corresponding integer value as parameter and
generates a KML file that draws a semi-transparent sphere
with a radius of the corresponding integer value for all
coordinates. Based on the same input parameters, the
BarVisualisation generates a KML file that draws one
white bar at the position of the coordinates with the
highest integer value, and grey bars for all other
coordinates. The highest integer value represents 100
percent. The integer values of the grey bars are indicated
by a dark filling with a height according to the percentage.
Finally, the CyclinderVisualisation expects a number
of GPS coordinates, but each with a corresponding array
of 24 integer values as parameter. The highest integer
value taken from all arrays represents 100 percent. This
visualisation draws a cylinder at all coordinates, subdivided
in 24 segments in the form of a pie chart. The 24 values
from each array in percent define the colour of the
segments ranging from light for 0 to dark for 100. These
three visualisation types are used by the different queries.
The output KML files are then visualised in Google
Earth.

The SphereVisualisation is used to present the
results of the InferenceEngineCountingPlaces and the
InferenceEngineCountingTimes. The list of all
significant places and their coordinates with either the
overall number of stays or the overall time of stays per
significant place is used as the input. The value of the
overall number of stays or respectively the overall time of
stays is used to define the radius of each sphere.
BarVisualisation is used for the presentation of places
a user is most probable at a given hour and the most
probable follow up stays. The NextStateSensor passes
the weekday and the hour chosen, from popup menus in
the LocaRhythmsClientGUI to the InferenceEngine-
JAHMMLocation  via XML-RPC in form of a
SensorEvent. There a query to the relevant HMMs is

prepared from the information on weekday and hour and
the probabilities are inferred from the JAHMMLocation-
HMM . The results are weighted, by combining the
probabilities of being at a specific place at a specific hour
with the probabilities of being at a specific place at that
specific day with different weights. Then, the weighted
final result is sent back to the LocaRhythmsClient and
used as parameters for the BarVisualisation. Finally,
the CyclinderVisualisation is used for illustrating the
stay probabilities for a specific time span for all relevant
significant places. A weekday and a hour for the start and
end is sent to the InferenceEngineJAHMMLocation,
where again a query to the relevant HMMs is prepared that
retrieves the weighted results for all inferred significant
places between the specific hours for the specific days.
The result, handed back in the form of SensorEvent, is
then again used as the input parameters for the
visualisation. For each query type and visualisation, the
LocaRhythmsGUI finally displays the KML file in the
Google Earth application.

IV. RELATED WORK
Begole et al. [4] analysed where users go online, and

inferred rhythms. They only distinguish between three
locations (office, home, lab) and they only visualised the
collected data without probabilistic reasoning. Ashbrook
and Starner [3] used a variant of the k–means clustering
algorithm to identify places and a Markov model approach
to predict the next possible place a person might visit. In
contrast to PRIMILocaRhythms they do no support time
prediction as only one global model exits for one user.
Furthermore, the models are not updated in real–time.
Eagle and Pentland [5] use cell ID and Bluetooth on
mobile phones for positioning, and so are limited to a
more coarse grained location precision outdoors, but can
predict where a “low entropy” subject will be in the next
hour based on the current context with an accuracy up to
90% with HMMs. This is not built in end-to-end
architecture—the analysis of the data is only done on the
collected data. Adams et al. [1] use a density-based
clustering algorithm to infer ‘social spheres’ (i.e.,
significant places) from GPS traces and infer rhythms
from this data. The data is not used for prediction but for a
context-sensitive video and photo browser and blog. In
comMotion Marmasse and Schmadt [15] identified
buildings as a significant place for a user if the GPS
signal was lost and after a time reappeared in a certain
radius. They made tests with pattern recognition tools to
predict the place a user is likely to go based on five
different GPS routes. Liao et al. [14] use hierarchical
Markov model to learn significant locations from GPS
data logs but they omit to consider time of the day and the
day of the week into their inference.

LocaRhythms integrates continuous capturing of data,
real-time learning of new significant places with updated
prediction models, and presenting information to users at
anytime. Most of the related work has solutions for one or
two of the above-mentioned challenges, but not a full-



integrated solution based on a modular design like
LocaRhythms that works real-time.

V. CONCLUSIONS
We presented LocaRhythms, an approach for capturing

GPS traces, extracting significant places and predicting
and presenting probable stays in a real-time distributed
application. Informal evaluations showed that prediction
works well for users with constant rhythms (e.g., during a
workday). For users with variations in their rhythms, a
future version should reflect this uncertainty in the
presentation. Furthermore, for real-world applications, we
found that the battery consumption is a limiting factor for
continuous capturing. Tests on the quality of prediction in
dependency of a lower sampling rate of GPS coordinates
will help us to find a better balance. We will focus on the
detection of changes in long-term rhythms, as those
changes are reflected to slowly. One of the challenges is to
detect changes at different temporal granularity levels in
order to model changes that only exist for a short period
(e.g., holidays) adequately. Different spatial granularity
levels can be explored to make better predictions on
coarser grained movements (e.g., between cities). This
should also help improving the functions for weighting
between the predications of different models.

ACKNOWLEDGEMENTS
We thank the members of the Cooperative Media Lab;

special thanks to Dennis Braunsdorf, Mike Drexel, Jan
Hanak and Tobias Pohl. Thanks for the anonymous
reviewers for comments on earlier versions of this paper.

REFERENCES
1. Adams, B., Phung, D. and Venkatesh, S. Sensing and Using Social

Context. ACM Transactions on Multimedia Computing,
Communications, and Applications 5, 2 (Nov. 2008). pp. 11:1-
11:27.

2. Ashbrook, D. and Starner, T.E. Learning Significant Locations
and Predicting User Movement with GPS. In Proceedings of the
6th IEEE International Symposium on Wearable Computers -
ISWC 2002. IEEE Computer Society Press, 2002. pp. 101-108.

3. Ashbrook, D. and Starner, T.E. Using GPS to Learn Significant
Locations and Predict Movement Across Multiple Users. Personal
and Ubiquitous Computing 7, 5 (Oct. 2003). pp. 275-286.

4. Begole, J.B., Tang, J.C., Smith, R.B. and Yankelovich, N. Work
Rhythms Analysing Visualisations of Awareness Histories of
Distributed Groups. In Proceedings of the ACM 2002 Conference
on Computer-Supported Cooperative Work - CSCW 2002. ACM,
2002. pp. 334-343.

5. Eagle, N. and Pentland, A.S. Reality Mining: Sensing Complex
Social Systems. Personal and Ubiquitous Computing 10, 4 (May
2006). pp. 255-268.

6. Facebook. Facebook | Home. http://www.facebook.com, 2009.
(Accessed 4/6/2009).

7. Francois, J.-M. Jahmm - An Implementation of HMM in Java.
http://www.run.montefiore.ulg.ac.be/%7Efrancois/software/
jahmm/, 2009. (Accessed 4/6/2009).

8. Google. Google Earth. http://earth.google.com/, 2009. (Accessed
4/6/2009).

9. Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-
Oriented Platform for Developing Sensor-Based Infrastructures.
International Journal of Internet Protocol Technology (IJIPT) 1, 3
(2006). pp. 159-167.

10. Gross, T., Stary, C. and Totter, A. User-Centered Awareness in
Computer-Supported Cooperative Work-Systems: Structured
Embedding of Findings from Social Sciences. International
Journal of Human-Computer Interaction 18, 3 (June 2005). pp.
323-360.

11. Jones, Q., Grandhi, S.A., Terveen, L. and Whittaker, S. People-
To-People-to-Geographical-Places: The P3 Framework for
Location-Based Community Systems. Computer Supported
Cooperative Work: The Journal of Collaborative Computing 13,
3-4 (Aug. 2004). pp. 249-282.

12. Juang, B.H. and Rabiner, L.R. Hidden Markov Models for Speech
Recognition. Technometrics 33, 3 (Aug. 1991). pp. 251-272.

13. Kang, J.H., Welbourne, W., Stewart, B. and Borriello, G.
Extracting Places from Traces of Locations. ACM Sigmobile
Mobile Computing and Communications Review 9, 3 (2005). pp.
58-68.

14. Liao, L., Fox, D. and Kautz, H. Learning and Inferring
Transportation Routines. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence - AAAI 2004.
AAAI Press, 2004. pp. 348-353.

15. Marmasse, N. and Schmandt, C. A User-Centered Location
Model. Personal and Ubiquitous Computing 6, 5-6 (Dec. 2002).
pp. 318-321.

16. Merriam-Webster, I. Merriam-Webster Online. http://www.m-
w.com/, 2009. (Accessed 13/3/2009).

17. NIMA. Department of Defense - World Geodetic System 1984.
National Imagery and Mapping Agency, ftp://164.214.2.65/
pub/gig/tr8350.2/wgs84fin.pdf, 1984. (Accessed 29/6/2007).

18. NMEA. NMEA. National Maritime Electronics Association,
http://www.nmea.org/content/nmea_standards/nmea_083_v_400.
asp, 2008. (Accessed 4/6/2009).

19. OGC. KML | OGC. Open Geospatial Consortium Inc., http://
www.opengeospatial.org/standards/kml/, 2008. (Accessed
4/6/2009).

20. Patterson, D.J., Etzioni, O. and Kautz, H. The Activity Compass.
Presented at First International Workshop on Ubiquitous
Computing for Cognitive Aids - Ubicog 2002. 2002.

21. Rabiner, L. and Juang, B. An Introduction to Hidden Markov
Models. IEEE ASSP Magazine (Jan. 1986). pp. 4-16.

22. Sanchez, D., Tentori, M. and Favela, J. Activity Recognition for
the Smart Hospital. IEEE Intelligent Systems 23, 2 (Mar.-Apr.
2008). pp. 50-57.

23. SiRF. Welcome to SiRF Technology. SiRF Technology Inc, http://
www.sirf.com/products/gps_chip.html, 2009. (Accessed
4/6/2009).

24. Sun Microsystems Inc. JSR-000082 JavaTM APIs for Bluetooth -
Final Release. http://jcp.org/aboutJava/communityprocess/final/
jsr082/, 2004. (Accessed 4/6/2009).

25. Sun Microsystems Inc. JSR-000179 Location API for J2ME -
Final Release. http://jcp.org/aboutJava/communityprocess/final/
jsr179/, 2005. (Accessed 12/3/2009).

26. Sun Microsystems Inc. jaxb: JAXB Reference Implementation.
https://jaxb.dev.java.net/, 2006. (Accessed 4/6/2009).

27. Sun Microsystems Inc. Developer Resources for Java
Technology. http://java.sun.com/, 2009. (Accessed 4/6/2009).

28. Twitter. Twitter: What are you doing? http://twitter.com/, 2009.
(Accessed 4/6/2009).

29. Westeyn, T., Brashear, H., Atrash, A. and Starner, T. Georgia
Tech Gesture Toolkit: Supporting Experiments in Gesture
Recognition. In Proceedings of the 5th International Conference
on Multimodal Interfaces - ICMI 03. ACM Press, 2003. pp. 85-92.

30. Winer, D. XML-RPC Specification. http://www.xmlrpc.com/spec,
1999. (Accessed 4/6/2009).

31. Witten, I.H. and Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Publishers,
San Francisco, 2006.


