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ABSTRACT
Mid-air pointing gestures enable drivers to interact with a wide
range of vehicle functions, without requiring drivers to learn
a specific set of gestures. A sufficient pointing accuracy is
needed, so that targeted elements can be correctly identified.
However, people make relatively large pointing errors, espe-
cially in demanding situations such as driving a car. Eye-gaze
provides additional information about the drivers’ focus of
attention that can be used to compensate imprecise pointing.
We present a practical implementation of an algorithm that
integrates gaze data, in order to increase the accuracy of point-
ing gestures. A user experiment with 91 participants showed
that our approach led to an overall increase of pointing ac-
curacy. However, the benefits depended on the participants’
initial gesture performance and on the position of the target
elements. The results indicate a great potential to support
gesture accuracy, but also the need for a more sophisticated
fusion algorithm.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Pointing; Gestural input; Empirical studies
in HCI;

Author Keywords
Attentive interfaces; automotive interface; gaze-added
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INTRODUCTION
Mid-air gestures have been repeatedly shown as a promising
method for interaction with secondary functions in the ve-
hicle while driving. In this context, it is very important to
distinguish, which form of gesture interaction is used, because
they vary in regards of usability and demands on the driver.
Exisiting classifications differentiate between deictic gestures
(i.e. pointing) and other forms of gestures, such as iconic, or
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Figure 1. Pointing gestures allow drivers to create references to all kinds
of vehicle functions just by pointing at them.

metaphoric gestures [11]. For human-vehicle interaction, lat-
ter ones can also be classified as symbolic gestures. Symbolic
gestures are pre-learned gesture shapes that users have to know
beforehand to operate certain functions in the vehicle. An ad-
vantage of symbolic gestures is that they can be performed
blindly, altough it has been shown that control glances occur
to check the correct posture and positon of the hand. One
downside is the effort for memorizing gesture commands. It
becomes more difficult to remember the entire gesture set as
the number of gesture-controlled functions increases [15]. An
increased learning effort might be acceptable for expert users,
but not for the majority of drivers. This limits the amount
of in-vehicle functions that can be efficiently supported with
symbolic gestures.

Pointing gestures, on the other hand, do not need to be learned
by the user. Pointing creates a simple deictic reference to all
kinds of real and on-screen objects (as shown in Figure 1).
Users are enabled to interact with a wide range of vehicle
functions without having to learn new gestures, which is par-
ticularly helpful for novice users [1]. During the execution
of a pointing gesture, users have to localize a pointing target
and make a coordinated pointing movement with their hands.
Compared to symbolic gestures, this requires a greater amount
of the users’ visual attention. However, with regard to the
advances in autonomous driving and the increasing number
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of driver assisting functions in modern vehicles, increased
visual attention is acceptable, when user experience, effective-
ness and ease-of-use for operating secondary functions are
increased in return.

Recent experiments have shown that drivers make relatively
large pointing errors while driving [6, 17]. This is in line with
findings from earlier experiments, which found that pointing
errors especially occurred, if users cannot move their head
towards the target [5]. The authors conclude that the data of
eye-gaze fixations provides information about the pointing
target, before the arm movement has event started. In fact, it
has been found that the user’s gaze is actually anchored to the
pointing target during a pointing movement [12]. Just recently,
this has also been shown in an experiment in the automotive
domain. The drivers’ eye-gaze is fixed on pointing targets
during freehand pointing while driving [1]. This knowledge
suggests that the close relationship between eye-gaze behav-
ior and pointing gestures might be used to improve pointing
performance while driving, without creating additional (visual
and cognitive) load on the user.

In this paper, we describe a practical implementation of a
simple algorithm that integrates gaze information with the aim
to increase the accuracy of pointing gestures. Moreover, we
report the results of a user experiment that reveals benefits and
downfalls of the approach.

RELATED WORK
The combination of gaze information with gestures was ex-
amined in a number of HCI experiements that explicitly use
gaze information to select objects on a screen and gestures to
manipulate selected objects. Chatterjee et al. showed how the
combination of gaze and gesture input can overcome gaze-only
or gesture-only systems [7]. Zhang et al. presented a similar
approach that enhanced the interaction efficiency compared to
a gesture-only interface, but they also encountered problems
regarding the participants eye-hand coordination [20]. Similar
approaches have been presented in the automotive domain.
Nesselrath et al. used gaze information to select real objects
of the vehicle, such as side mirrors or windows. Gestures on
the steering wheel or speech commands could then be used to
control these objects [13]. Kern et al. showed the application
of gaze information to select objects on a screen in combina-
tion with a haptic button on the steering wheel to confirm the
selection [9].

All these prototypes have in common that they share the same
approach for the integration of gaze information. It is used as
an conscious, active selection tool, combined with a second
modality for modification. Gaze input replaces the function of
another input mode (e.g. touch or mouse input for selection).
Salvucci et al. point out two problems that emerge from such
gaze-based interfaces: the noise and limited availability of
eye tracking information, and the dissociation between the
user’s glance behavior and the actual visual attention [18].
Especially the latter one, is very relevant in the automotive
context. Driving is typically a dual-task situation with driving
the car as the primary task, and operating non-driving related
functions as the secondary task. Since steering a vehicle is
visually very demanding, the driver’s glances may be directed

towards the street, although the mental attention is on the
completion of a secondary task. Therefore, the authors propose
the usage of gaze-added interfaces, which provide the same
basic functionality as non-gaze interfaces, but add the ability
to incorporate gaze information, if available [18].

Zhai et al. presented such a gaze-added prototype that com-
bines passive gaze information with active mouse input. It
passively tracked users’ eye movements to predict the pointing
target of the mouse and uses this information to enhance the
movement of the mouse cursor [19]. Oviatt et al. describes
this form of multimodal integration as blended multimodal
interaction. The passive input mode is used to improve the
multimodal system’s prediction and interpretation of the active
mode [14].

A number of studies over the last years presented other promis-
ing approaches on how to increase the accuracy of mid-air
pointing gestures. Mayer et al. demonstrated how systematic
displacement of different ray-casting approaches can be com-
pensated using two-dimensional polynomials [10]. Plaumann
et al. showed the influence of ocular dominance and hand-
ness on pointing gestures. They present a selection algorithm,
which uses this information, to increase the users’ pointing ac-
curacy [16]. For pointing in the automotive domain the visual
demand of the driving task, noisy sensor data, or unintended
movement due to driving and road conditions further limit the
effectiveness of pointing gestures. Ahmad et al. presented a
Bayesian framework that takes additional sensory data from
the vehicle (e.g. such as suspension travel data) into account
in order to preditct freehand pointing targets. Though not
evaluated, they also propose that eye-gaze data could offer
valuable information on areas of interest on the display [4].

Summary
Pointing gestures enable drivers to interact with a wide range
of vehicle functions, without the increased learning effort of
symbolic gestures. While technical challenges to detect user’s
pointing direction exist, a more fundamental problem is that
users pointing movements often lack sufficient accuracy to
identify user intentions. Existing approaches make use of
mathematical functions, users’ ocular dominance or vehicle
sensor data to increase pointing performance. Eye-gaze data
has been shown to provide meaningful information about the
users’ attention, especially while performing finger pointing
movements. In the automotive domain, gaze input has been
used as an active selection tool, but it has not been used as
a passive input modality to improve pointing gestures. We
propose a first practical approach, how gesture data could be
enhanced with passive eye-gaze data, in order to compensate
for the lack of pointing accuracy.

PROTOTYPE
In the following section, we describe the physical setup of the
prototype and the selection algorithm for the fusion of gesture
and gaze data.

Apparatus
The setup of the prototype for the experiment is shown in Fig-
ure 2. In front of the mock-up, there was a 65 inch screen dis-
playing a driving simulation. A Thrustmaster force-feedback



Figure 2. The vehicle mockup included a gesture camera and an eye-
tracker. Selectable elements were displayed on the right side of the
curved screen.

steering wheel was used in combination with foot pedals for
gas and brake to control the vehicle. There was a 34 inch LG
curved screen integrated in the mock-up. It was placed approx-
imately 34 cm behind the steering wheel. The display was
sunk in the mock-up, so that only 18 centimeters of the screen
were visible. The left part of the screen displayed information
about the vehicle, such as speed. The right part of the screen
displayed four selectable elements. Elements were squared
with a side length of 6.75 cm x 6.75 cm. A Tobii 4C eye-
tracker1 (A) was placed centered behind the steering wheel to
track users’ gaze. The users’ fingers were tracked with a Leap
Motion2 (B). It was placed to the right of the steering wheel
on the middle console, so that it covers the mid-air gestures
area. An important part of this area is the mid-air gesture in-
teraction pane (C) in front of the four elements, which is used
for selection. The tablet on the middle console was only used
for instructions and collecting demographic data beforehand
and was not part of the interaction during trials.

Selection Algorithm
In order to select one of the four elements on the screen,
participants made a pointing movement with their right index
finger by moving the outstretched finger towards the screen
(see Figure 1). The mid-air gesture interaction pane was 25
cm wide and placed approximately 26 cm in front of the four
selectable elements on the screen (C in Figure 2) and was
tilted towards the driver. A selection was triggered when the
fingertip of the index finger entered the interaction pane. It
was horizontally split into four equally spaced portions (6.25
cm each). Based on these portions, the horizontal position
of the fingertip in the moment of selection determined the
gesture target element (elemGesture). Eye-gaze information

1https://tobiigaming.com
2https://www.leapmotion.com/

Figure 3. The algorithm distinguished three possible cases how to inte-
grate gaze information for the selection.

was incorporated in the moment of the gesture selection. The
user’s gaze point on the screen determined which of the four
elements the user is gazing at in the moment of selection
(elemGaze).

This approach aims to integrate only passive gaze data, which
means that users do not know that their gaze is taken into
account. Thus, their gaze is not necessarily focusing the target
element in the moment of selection (e.g. for control glances
back to the street). In this case, integrating gaze data would
falsify the selection. To avoid this, we assume that the gaze
does not refer to the pointing selection, if elemGesture and
elemGaze differ by more than one element. Based in these
considerations, we apply an algorithm that uses three simple
fusion rules to determine the selected element. It is illustrated
in Figure 3.

di f f = |elemGesture− elemGaze|

A : di f f == 0
Both input modes indicate the same element. No correction
is needed. ⇒ Select elemGesture (2).

B : di f f == 1
Gesture and gaze indicated different, but neighboring ele-
ments. We assume that the gaze and gesture refer to the
same target, but elemGesture is wrong due to inaccurate point-
ing. ⇒ Select elemGaze (3).

C : di f f > 1
Both elements differ by more than one position. We assume
that the gaze does not refer to the target element. ⇒ Select
elemGesture (2).

EXPERIMENT
We conducted a user experiment that examined the benefits of
a gaze-added selection algorithm for mid-air pointing gestures
while driving. In a number of pre-tests in a desk setup, we



observed that the benefit of our approach might depend on
the participants’ individual experience with gesture interaction
and their resulting pointing performance. We decided to in-
vestigate the algorithm in a study with a a variety of different
users, in order to get a general overview of the potential of the
approach.

Participants
A total of 91 participants (28 females) between 17 and 66
years (M = 35.52,SD = 11.79) took part in our study. 66 of
the participants reported that had never used any form of ges-
ture interaction with computers before, 25 reported to already
have some experience with the usage of mid-air gestures. 39
participants were driving daily, 48 participants were driving
several times a month and four participants stated that they
don’t drive a car.

Study Design
Each participant completed one 5 minute trial in a driving
simulator. They did a quick gaze calibration process, but were
told that this was used to measure visual distraction. There-
fore, participants did not know about the integration of gaze
information for the selection. We wanted to avoid an artificial
gaze behavior and instead focus on the benefit of naturally
occurring eye-gaze information while pointing. During the
ride, participants were repeatedly instructed to select one out
of the four elements on the screen in the vehicle mock-up.
The selection was made using gesture input by pointing in the
direction of the selected element. Additionally, eye-tracking
information was used to modify the users’ gesture selection as
described in the previous sections. Participants received visual
feedback, which element was selected. The output element of
the fusion algorithm was highlighted for one second and an
earcon was played. The feedback did not explicitly differen-
tiate between right or wrong selections. For each participant,
we logged the percentage of correct selections with the gaze-
added selection algorithm (fused accuracy). Additionally, we
recorded the percentage of correct indications based on gesture
information only (gesture accuracy). By comparing gesture
accuracy and fused accuracy, we can determine the increase
of pointing accuracy with the gaze-added system instead of an
unimodal approach.

Procedure
At first, participants adapted the position of the seat (height
and distance to the steering wheel) according to their size and
length of arms, so that they could comfortably reach the in-
teraction pane. Then they started the experiment by tapping
on the tablet to the right (see Figure 2). Textual instructions
on the tablet led the participants through the whole proce-
dure. For the majority of the participants (85%) there was
also an additional examiner who supervised the procedure.
At first, demographic data was collected. In the next step,
the eye-tracking system was calibrated. Participants had to
focus two pulsing points on the screen to determine the left
and right boundaries of the gaze interaction area. This was
followed by a textual instruction on how to select elements on
the screen, namely by pointing towards the requested element
and physically crossing the virtual pane with the outstretched

Case All Elem 1 Elem 2 Elem 3 Elem 4

Case A 48% 60% 51% 50% 30%
Case B 17% 11% 17% 18% 22%
Case C 1% 1% 1% 3% 0%

No gaze 34% 29% 31% 29% 47%
Table 1. Occurence of the three cases in percent, summarized for all
selections and depending on the target element. The last row shows the
percentage of selections for which participants did not gaze at the UI.

index finger. An example element appeared to practice this
selection mechanism. If participants tapped too far left or
right, an according hint was displayed ("e.g. Tap further left").
During this practice phase there was no integration of gaze
information. After this selection was successfully completed,
the driving simulation started automatically. The driving task
was to follow a leading vehicle on a highway road with three
lanes at 120 km/h. The road was slightly winding and there
was only little traffic so that the leading vehicle stayed on the
rightmost lane most of the time. During the first 40 seconds,
no selections had to be made, so that participants could get
used to the driving simulation. After that, participants com-
pleted nine selections. Each selection started with an acoustic
notification and a textual instruction which element to select
(e.g. "Select Blue"). Then the four elements appeared and par-
ticipants tried to select the instructed element. The elements
disappeared after a selection was made. The next selection
started with a delay of 10 seconds.

RESULTS
We excluded about 17% of the total data set due to two rea-
sons. First, there was a number of selections for which the
eye-tracker did not output any gaze data. This might be caused
by several reasons, such as failure of the tracking hardware, or
by greater changes in posture of the participants after the eye-
gaze calibration. We only analyzed selections with available
gaze data, because the tracking performance was not focus
of this experiment. Second, we observed some wrong selec-
tions, because participants could not remember the instructed
element, when a certain amount of time passed between in-
struction and selection (because participants concentrated on
driving). For this reason, we excluded selections from the
analysis, if the selection time (from the moment of instruction
until selection) was longer than the third quartile of all selec-
tions plus 1.5 * interquartile range and thereby classified as an
outlier according to Tukey.

Table 1 summarizes the occurrence of the three cases described
in Figure 3. In 48% of selections, gesture and gaze identified
the same element (Case A). They differed by one element
in 17% of selections (Case B). Deviations of more than one
position occurred only in 1% (Case C). In the remaining 34%,
the participants’ gaze did not focus any UI element in the
moment of selection. Although elemGaze was not available
and the algorithm could not be applied in these cases, they are
still part of the reported results.

The following sections focus on the accuracy (percent of cor-
rect selections) that was achieved with the presented gaze-



Figure 4. Pointing gesture accuracy (left plot) could be increased by
incorporating gaze data, resulting in a slightly improved fused accuracy
(right plot).

added selection algorithm in comparison to the accuracy only
based on gesture information. To measure the benefit of our
approach we calculated the difference between the gesture
accuracy and the fused accuracy for each participants (∆a).

∆a = fused accuracy - gesture accuracy

Gesture Accuracy and Fused Accuracy
Gesture accuracy and the fused accuracy are illustrated in
4. The left boxplot shows that there was a big spread in
gesture accuracy between participants. The mean gesture
pointing accuracy was 75.52% (Median = 77.78%) over all
participants. Although the algorithm influenced only 17%
of all selections (Case B in Table 1), it led to an improved
fused accuracy of 80.56% (Median = 85.71%). A Wilcoxon
signed-rank test showed that the increase was significant
(Z = −2.12, p < .05,r = 0.22). The data was not normally
distributed.
The overall ∆a is 5.04%, which is composed of 10.05% im-
proved selections, but also 5.33% selections where the gesture
indicated the correct element, but the gaze element was se-
lected. Furthermore, the increase of accuracy was not equally
distributed among participants. For 42.86%, there was neither
an increase nor a decrease of accuracy. 37.36% of the partici-
pants were overall supported by the algorithm, but for 19.78%
the algorithm led to a decrease of selection accuracy.

Influence of Experience
One strength of pointing gestures is its simplicity, which makes
it particularly suitable for novice user [1]. We hypothesized
that our algorithm will be more valuable for those people who
are less experienced with gesture interaction. Therefore, the
participants reported their level of previous experiences with
gestures interaction at the beginning of the experiment.

Based on this data, we compare the pointing gesture per-
formance and the benefit of the algorithm for two different

Figure 5. The increase of fused accuracy (right plot) compared to gesture
accuracy (left plot) was greater for novice participants, who did not have
any experience with gesture interaction.

groups of participants: Novice users, who reported to have
no experience with gesture interaction (66 out of 91 partici-
pants), and experienced users, who reported to already have
some experience with gestures interaction (25 out of 91). The
group of novice users is shown in Figure 5. Gesture accuracy
was 74.57% (Median = 77.78%). Additional gaze informa-
tion increased the mean accuracy by 7.14% up to 81.45%
(Median = 85.71%). The data was not normally distributed.
A Wilcoxon signed-rank test showed that the improvement
was significant (Z =−2.38, p < .05,r = 0.25).
For the experienced group of participants, the fused accuracy
of 78.03% (Median = 87.50%) showed no improvement com-
pared to a gesture accuracy of 78.20% (Median = 75.00%).
Accordingly, a Wilcoxon test showed no significant differences
between both variables in this case (Z =−0.35,ns.)

Influence of Element Position
Based on the results of previous studies, we assumed that the
horizontal position of the instructed elements would have an
influence on the users’ pointing performance [17]. For this
reason, we analyzed the benefit of our algorithm for each of
the four elements.

Figure 6 shows that the accuracy of the pointing gesture was
highest for the leftmost element, 87.57%. It decreased to
63.98% for the element in the rightmost position. With the
gaze-added algorithm, the accuracy for the leftmost element
is also at 85.57%. There is no improvement for this element.
There is also a decrease in accuracy for elements further right,
but it is less critical than for the gesture accuracy. The right-
most element was still selected with an accuracy of 71.43%.
The biggest improvement was made for the third element
(8.98%). However, Cochran’s Q test determined that the in-
fluence of the position of the four elements were statistically
significant in both cases, gesture accuracy (χ2(3)= 28.27, p<
.01), and fused accuracy (χ2(3) = 16.41, p < .01).



Figure 6. The position of the elements had a significant effect on gesture
accurracy and fused accuracy. Error bars display the 95% confidence
intervall of the mean.

Figure 7. There is a negative correlation between the gesture accuracy
and the improvement made by the algorithm (∆a).

Dependency on Gesture Accuracy
The results of the previous two sections showed that the ben-
efit of our approach is greater for novice users, and for ele-
ment positions that are further away from the users line of
sight. In other words, we observed that the improvement
of the gaze-added approach is greater when the accuracy of
the pointing gestures decreases. We found a highly signifi-
cant negative correlation between the gesture accuracy and ∆a
(rs = −.53, p < .01). Figure 7 shows this relationship. For
participants with lower gesture accuracy (below 70%), ∆a is
throughout positive and led to major improvements. However,
when the gesture accuracy is higher (above 70%), ∆a is lower
and also drops below zero. For those people, the additional
gaze information had a negative effect on the fused accuracy.

DISCUSSION
In summary, our results show that our gaze-added algorithm
led to an overall improvement of selection accuracy for point-
ing gestures while driving. Users did not know that their gaze

behavior influences the selection algorithm. Therefore, we
claim that the users’ gaze behavior does not differ compared
to a normal pointing gesture selection. The increased accu-
racy of the system might further lead to a general reduction
of driver demands, since the correction of wrong selections
would draw more of the users’ attention. In this context, it has
been shown that the incorporation of additional vehicle data
enhances mid-air selections, which finally resulted in reduced
driver demands [2].

The results also show that the benefit of our approach is de-
pending on different factors. Inexperienced users, who had
a lower gesture pointing accuracy, benefit more than expe-
rienced users that are more likely to have a better pointing
performance. Moreover, we observed that pointing perfor-
mance decreases for elements that are further away from the
driver’s line of sight. The average difference of pointing ac-
curacy was 23.59% between the leftmost and the rightmost
element. These results are in line with findings in previous
work [5, 17]. The gaze-added selection reduced the decrease
by improving the accuracy for elements on the right, so that
the difference between leftmost and rightmost element was
only 14.14%.

In the end, this comes down to one observation: the benefit of
gaze-added pointing increases, when initial gesture accuracy
decreases e.g. for inexperienced users, or for elements that
are further away from the users’ line of sight. The significant
negative correlation between gesture accuracy and ∆a statisti-
cally backs this observation. The gesture accuracy for pointing
is greatly influenced by the difficulty to target the requested
element, which Fitts describes as a function of the width and
the distance of selectable target items. [8]. In this regard, our
algorithm is likely to provide greater improvements of selec-
tion accuracy when the selectable elements are more difficult
to target with pointing gestures, e.g. when they are smaller
(which will be necessary, if developers want to put more than
four items on the screen), or if the position of the display in
future vehicle concepts moves further away from the user.

Limitations
The algorithm presented in this paper is based on a simple
approach, that aimed to support gesture selections by integrat-
ing gaze information in a clear and comprehensible way. Our
results indicate that this approach generally works and leads
to a significant improvement of accuracy, but they also reveal
downsides of the algorithm. A more elaborate fusion algo-
rithm is needed, e.g. by integrating gaze information based
on a probabilistic model. Similar approaches have presented
when incorporating vehicle data to optimize pointing perfor-
mance [2]. Furthermore, inaccuracies of the used gestures
sensor might contribute to bad pointing performance. Gesture
recognition technologies in current vehicles also suffer from
recognition problems. Even more, additional gaze data could
help to reduce drawbacks from gesture sensor noise. Although
eye-tracking technology faces similar accuracy problems, es-
pecially in the automotive domain, our experiment indicates
how the fusion of both sensors can result in an overall in-
creased accuracy. We also point out that the results are limited
to a relatively specific setup, namely four large elements on a



wide screen. The driving simulator did not support movements,
which is likely to degrade pointing gesture performance even
more [3]. Therefore, further studies will be needed to investi-
gate the generalizability of the results for a greater variety of
tasks, different setups and more realistic driving conditions.

CONCLUSION
We presented a user experiment that examined the benefits
of integrating gaze input to improve the accuracy of pointing
gestures while driving. In comparison to earlier research that
combined these two modalities, we integrated gaze input in
a passive way. Participants did not consciously use gaze in-
put, but we only took naturally occurring eye-gaze data into
account. We presented a simple algorithm how to fuse both
modalities. The results of our experiment showed that the
benefit of this approach is depending on the drivers’ initial
gesture accuracy, which is influenced by various factors, such
as the experience with gesture interaction, or the size and posi-
tion of target elements. The benefit of the presented approach
grew when the difficulty of accurate gesture pointing increased.
This led to major improvements for novice users and for those
elements that are more difficult to select. On the other hand
there was also a lack of support, or even a decline of accuracy,
for those people that made very accurate pointing gestures.
Despite some limitations, we argue that the gaze-added point-
ing approach can lead to an increase of selection accuracy,
without posing additional demands on the driver. Based on
these first promising results, our future work will focus on the
development of a more elaborate fusion algorithm to better
assess the drivers’ focus of attention.
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