

Task-Based Focus and AdHoc-Focus-
Territory—Novel Concepts for Shared
Interactive Surfaces

Abstract
Shared Interactive Surfaces allow co-located users to
collaboratively work on a task. As current technology
often is not able to distinguish between different users,
there is a potential for concurrent conflicting actions of
multiple users, leading to unwanted results and accord-
ingly frustration. With our concepts for Task-Based Fo-
cus and AdHoc-Focus-Territory we provide light-weight
solutions - integrated in our toolkit TUIOFX - for de-
signers of multi-user, multi-touch applications. Our so-
lution helps to overcome some of the problems of
anonymous touch input, without an immediate need for
more heavy-weight mechanisms like user identification.

Keywords
Shared Interactive Surfaces; Multi-User; CSCW

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces —Input devices and strategies

General Terms
Human Factors

Introduction
Shared Interactive Surfaces (SIS) provide new means
for collaborative work of co-located users in the form of

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).
CHI'16 Extended Abstracts, May 07-12, 2016, San Jose, CA, USA
ACM 978-1-4503-4082-3/16/05.
http://dx.doi.org/10.1145/2851581.2892446

Mirko Fetter, David Bimamisa, Tom Gross
Human-Computer Interaction Group
University of Bamberg
96045 Bamberg
<firstname.lastname>(at)uni-bamberg.de

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1193

large tabletops or interactive walls. Conceptually, they
advance the idea of Single Display Groupware (SDG)
[18, p. 286], which “enable co-present users to collabo-
rate via a shared computer with a single shared display
and simultaneous use of multiple input devices”. How-
ever, they also share some of the challenges such sys-
tems brought with them, like possible conflicts that
arise when users “attempt simultaneous incompatible
actions“ [18, p. 290].

While a SDG typically has several mice attached (i.e.
one for each user) a SIS gives each user the possibility
to interact directly with the surface via multi-touch in-
put. Thereby one severe limitation of most current off-
the-shelf technology is the restriction that—while they
can detect touch points, they cannot keep track of the
users who instantiated these touches. In the following
we refer to this as anonymous touch input. This intro-
duces new challenges for users, but foremost for appli-
cation developers and their interaction design. Among
these challenges are access control, the provision of
personalised data and interfaces, and independent in-
put sequences [15]. To deal with this, current solutions
often restrict the user freedom (e.g., fixed territories)
or require additional hardware (e.g., user identification,
user distinction).

In this paper, we propose two new concepts for multi-
user, multi-touch Widget-Toolkits, namely Task-Based
Focus and AdHoc-Focus-Territory, which enable applica-
tion developers to design multi-user applications that
reduce the number of input conflicts without restricting
the freedom of the users. In the following we provide a
thorough understanding of the current challenges and
the related work, and give a detailed explanation of our
concepts and hints on their implementation.

Background
In single-user systems or mouse-based multi-user sys-
tems like SDG each input event is delivered on a dedi-
cated channel registered to one user. Currently availa-
ble technologies for detecting touch on shared interac-
tive surfaces (e.g., Frustrated Total Internal Reflection
(FTIR), Diffused Illumination (DI), In-Cell Touch) often
do not allow to link input events to their originator.
Such anonymous touch input introduces a variety of
challenges for the developers of multi-user applications,
because it is impossible to determine if a series of in-
puts originates form one or multiple users.

Input Sequences and Focus
One specific problem is that the predominant interac-
tion style in UIs is based on sequences of input events
from single users. However, when multiple users simul-
taneously interact with a system though anonymous
touch input, the sequentiality of events for one user
cannot be obtained. For example, to select something
from a drop-down menu, a user would click to expand
the menu, eventually scroll through the list of items,
and then select one—which automatically collapses the
menu. This mechanism relays on the premise of a sin-
gle focus, assuming there is only one element receiving
input at a time [1]. To continue the example: If instead
of selecting an item, the user would decide to interact
with a different UI element, the pop-down menu would
loose the focus (i.e. a blur event) and also collapse.
This blur mechanism is also used in other cases. Imag-
ine the user made a rectangle selection of multiple
icons in a file explorer. Starting a new selection or just
clicking in the background causes a blur event and re-
moves the previously made selection. Single-user mul-
ti-touch devices like smartphones or tablets use the
focus and blur events on text fields and other controls

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1194

to respectively show or hide the virtual keyboard. This
mechanisms of click-to-focus and blur are elementary
to many UIs—and hence our mental models—and so
define our expectations on how such controls work.

However, this single focus and blur model cannot be
maintained in a multi-user environment with anony-
mous touch input. When it is unclear whether the same
or a different user produced two subsequent inputs, the
intention becomes ambiguous. If we rethink our previ-
ous examples, it is unclear what should happen when a
second touch occurs on a second drop-down menu,
while the first one is still open. Is it the same user, and
should the old one be closed? Is it a different user, and
both should be open? In the same way it is ambiguous
if for a selected text input ideally a new virtual key-
board should be displayed for a second user, or if it is
the same user, just proceeding with filling out multiple
text fields. And for the selection of multiple icons, every
interaction by a second user with the file explorer
would remove the selection, if the single focus model of
most widget toolkits would be maintained. In the fol-
lowing we look at what solutions to this problem so far
were conceived in the related work.

Related Work
While one of the first commercial available shared in-
teractive surfaces, the MERL DiamondTouch table [2],
was able to distinguish input sequences from different
users, based on capacitive coupling and receiver mats
on the users’ chairs, the approach was a little limited
due to the fixed positions of the users. Since then, the
now predominant optical approaches lost the ability to
identify - or at least distinguish between - different us-
ers. In the following we highlight different approaches
to deal with this problem.

User Identification
One approach to overcome this limitation is the idea to
superimpose some form of user identification that can
instantaneously link individual anonymous touch input
to users. For example the IR Ring [14] is worn on the
user’s hand and emits a pulsed light pattern that can be
tracked by a FTIR table. Nearby touches then are as-
sumed to be originated by the person wearing this IR
Ring. Marquardt et al. [7] used gloves tagged with fidu-
cial markers that are detectable by the Microsoft Sur-
face table. There are many other approaches, including
the use of objects like a mobile phone as a proxy (Mo-
biZone [12]), the assignment of touches to users based
on the position of their shoes (Bootstrapper [13]), or
the use of electromagnetic sensing at the users wrist to
detect interaction with an interactive tabletop (EMSense
[6]). In all cases, additional hardware and highly cus-
tomised software is needed. Further these approaches
also lead to very specialised setups that often come
with a high configuration effort.

Territories
Another approach is the use of territories [11,17]. The
basic idea is to design applications in a way that they
allocate a fixed screen estate—a personal territory—to
a single user. In these personal territories it can be
fairly assumed that only one single user generates all
touch input. Some approaches even combine the ideas
of territories with those of user identification, like for
example Bodylenses [5] or IdLenses [16]. They either
use the body or hand shape to distinguish users and
generate adhoc territories linked to this shape. Howev-
er, territories often limit the freedom of users in the
intensive parallelised interaction style that SIS original-
ly promise [4].

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1195

Table 1. The number of foci (F) needed for various setups. While in most setups F is easily derivable, from the
number of users (U) or indirectly from the number of pointers (P) for the SDG, the only clue in the SIS setup
is an estimate of the simultaneously carried out tasks (T), which is equal or lower the number of users.

 Single User Multi-User
 Desktop

Computer
Multi-Touch
Device

Single Display
Groupware (SDG)

Shared
Interactive Surface (SIS)

No. of Users 1 1 U | 2 ≤ U ≤ 10 U | 2 ≤ U ≤ 10
No. of Pointers 1 P | P ≤ 10 P=U*1 P1+ P2 +…+ Pu | Pi ≤ 10

No. of Tasks 1 1 T | T ≤ U = P T | T ≤ U
No. of Foci 1 1 F=P=U F=T

Toolkits and Other Approaches
Most existing widget-toolkits for SIS only provide rudi-
mentary support for multiple users. For example, the
popular Surface SDK allows only one single virtual key-
board as it inherits WPF’s single-focus input restriction
[8]. The TextEditWidget of the Cornerstone SDK
[9] provides an attribute groupName that allows as-
signing text fields to a group that share one virtual
keyboard, which at least gives the developers some
freedom. Specific challenges, like the problem of multi-
ple selections for multiple users, are also addressed by
some research, but in a more isolated manner (e.g., in
[10,12]) and without the integration into a toolkit.

Concept
In the following we present the concepts for Task-
Based Focus and AdHoc-Focus-Territory, helping to
maintain input sequences of multiple users under the
presence of anonymous touch input. The basic assump-
tion is that either maintaining a single-focus model or
removing the focus concept completely, both lead to
unwanted and unexpected results for the users. An ac-
cording solution would be a multi-foci model, which

provides each user with a focus. In Table 1 we can see
the number of foci needed for various setups is ideally
based on the number of users (U). In Single User-
Systems this number can be assumed to be one. In
mouse based multi-user systems like SDG, the number
of pointers (P) allows to derive the number of users. In
multi-user systems with anonymous touch input it is
impossible to come to an optimal number of foci and to
continually assign the correct focus to the correct user.

Task-Based Focus
In our concept of Task-Based Focus we therefore as-
sume that even though multiple users are interacting
with a SIS synchronously on a common group task, this
group interaction is still compromised of smaller indi-
vidual tasks (i.e. subtasks) that are carried out inde-
pendently by the users. Such individual tasks for ex-
ample are entering an address, configuring an ad-
vanced search, or editing the properties of an item—all
tasks that are consisting of filling out multiple text
fields and other form elements. For all the UI elements
that belong to such an individual task, we can assume
that only one user simultaneously is interacting and
therefore a single focus can be assigned to this group
of elements.

Such a grouping we call a focus area. All elements in a
focus area share one focus. Accordingly the behaviour
of drop-down menus inside this area is as a user would
expect it from a single-user system. Further, the ele-
ments are not affected by or affecting controls outside
this focus area. In this sense also all text input ele-
ments in this focus area share one virtual keyboard,
that is visible or not based on which element currently
holds the focus in this focus area (cf. Figure 1).

Figure 1. Two instances of a search
dialog, each with a task-based focus,
allowing optimal parallel input by two
users.

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1196

AdHoc-Focus-Territory
The AdHoc-Focus-Territory is a special case of the
Task-Based Focus. In some cases, it is difficult to group
a number of UI elements together to form a focus area.
This for example happens in environments were opera-
tions are directly invoked on a selection of multiple ob-
jects. For example, a UML-Editor or CAD-programme,
where users work on different parts of a bigger struc-
ture. In our concept of the AdHoc-Focus-Territory we
therefore depart from the understanding that such a
multi-selection leads to the adhoc generation of a tran-
sient Task-Based Focus area. If a user performs a se-
lection (cf. Figure 2.) we instantly generate a focus ar-
ea, in the size of the selection. In order to make this
visible to the user, the rectangular marquee selection
stays visible. All actions inside this rectangular are
treated with a single focus. Any interaction outside of
the rectangular has no effect on the selection and the
selected items. This way, other users can also generate
AdHoc-Focus-Territories in parallel. Inside the territory,
the user now can manipulate the group of selected ob-
jects directly (e.g., move them) or via a context menu
(e.g., delete them). Once finished with the task, the
user touches the background inside the rectangular,
resulting in a blur event instantly removing the territo-
ry. Similar mechanisms for selections of cells in a table
or parts of a text by multiple users are conceivable.

Both concepts provide the designers of applications
new means to handle input from multiple anonymous
users, without being too restrictive. Our rationale was
to stay close to the mental models users already have
from single-user interfaces. This way the users often
won’t even recognise, or at least quickly pickup these
new concepts. Of course, it requires an interaction de-
signer that has a clear concept of the users’ tasks.

Implementation in TUIOFX
Both concepts are integrated in and tested with the
TUIOFX Toolkit [3], a JavaFX toolkit for developing mul-
ti-user, multi-touch applications.

The Task-Based Focus is implemented in form of a sim-
ple boolean property (focusArea) which can be as-
signed by the developer to any JavaFX Node. Any chil-
dren of this node will then belong to the same focus
area, and share a single Task-Based Focus. JavaFX
holds all UI elements (i.e. nodes) in a tree-like struc-
ture (i.e. the scene graph). Accordingly each element
can easily infer to which focus area it belongs. In order
to make the UI elements behave according to the Task-
Based Focus, we adapted the behaviour of all standard
widgets through extensive skinning. Firstly, this re-
quired making all widgets agnostic to Java’s internal
focus model—which is single-focus. On an individual
widget level, all PopupWindow-based controls (Com-
boBox, ChoiceBox) for example, should only collapse
when a touch event occurs within the focus area asso-
ciated to that PopupWindow. To achieve that, we re-
moved the standard closing behaviour and added an
event filter. The filter is listening for all events routed
through the respective focus area’s root node. Only
when a new touch event is received on any of the other
child nodes, the menu is closed. Furthermore, the text
input controls (TextField and TextArea) are
changed in order to support parallel writing. By extend-
ing TextFieldSkin and TextAreaSkin we are able
to receive user text inputs from attached TUIOFX virtu-
al keyboards, even though they lose Java’s internal
focus. Additionally, hiding and displaying the keyboard
is based on the same event filter model like for the
PopupWindow. Finally, also the visual styling is
adapted, that when a text field looses Java’s single in-

Figure 2. The AdHoc-Focus-Territories
through multi-selection allow two users to
work in parallel on a subset of a composed
artefact. While one user changes the
properties of some elements via a context
menu (1), a second user moves three
selected elements (2) by directly drag-
ging them.

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1197

ternal focus, it still shows a caret and is highlighted, as
long it has the focus of the focus area. All these chang-
es are made under the hood of TUIOFX, that a JavaFX
developer can use the standard JavaFX API and only
needs to assign the focusArea–property as needed.

The AdHoc-Focus-Territory is more difficult to general-
ise and therefore so far is only partially integrated in
the TUIOFX toolkit. As selection mechanisms for select-
ing multiple items often are very application specific
(think of lasso selection, rectangular selection, selection
of part of a text or table cells, etc.), it is almost impos-
sible to provide valuable default behaviours on a
toolkit-level. We up to now started implementing the
AdHoc-Focus-Territory concept for some assorted widg-
ets like TextArea and TableView.

To verify these concepts, we developed several demo
applications. In Figure 3 you can see two instances of
the same search dialog, each with a Task-Based Focus
assigned from a collaborative moodboard application.
We see that, while the dialog on the left has an open
drop-down menu the dialog on the right has the focus
on a text field and an open virtual keyboard. The inter-
action in each dialog resembles the expectations of a
user from a single user interface, as the controls inside
each dialog affect each other but not between two dia-
logs. Figure 4 shows a part of a collaborative UML- Edi-
tor that relies on the AdHoc-Focus-Territory. We can
see that two users have made a selection, and now
both are able to interact with the items inside the terri-
tories, while the rest of the model stays unaffected. A
third user can even work on another part of the model,
and directly rename an object. To remove the territory,
the user simply needs to click in the background inside
the blue rectangular visualising the territory.

Conclusion
In this paper we presented the concepts for Task-Based
Focus and AdHoc-Focus-Territory. While our approach
does not address problems like access control or per-
sonalised data, it aims to tackle a small subset of the
problems related to anonymous touch input. In these
cases it gives the developer of multi-user, multi-touch
applications new means for their application design for
of-the-shelf hardware and without the need for more
heavy-weight approaches like user identification. Fur-
ther, by building on mental models users already have
from single user systems, we aim to improve the user
experience.

In future work, extensive studies need to prove if these
concepts work fluently. That is, if users easily under-
stand the interaction principles, if they help to minimise
conflicts among users, and if they are widely applicable
in different scenarios. Therefore, we are interested in
feedback from developers using both concepts with
TUIOFX, to deepen our understanding of where these
concepts work, and where they might be challenging.

Acknowledgements
We thank the members of the Cooperative Media Lab.

References
[1] Hrvoje Benko, Shahram Izadi, Andrew D Wilson,

Xiang Cao, Dan Rosenfeld and Ken Hinckley.
Design and Evaluation of Interaction Models for
Multi-touch Mice. In Proceedings of Graphics
Interface 2010 - GI 2010 (May 31 - Jun 2, Ottawa,
Canada). Canadian Information Processing Society,
Toronto, Canada, 2010. pp. 253-260.

[2] Paul Dietz and Darren Leigh. Diamondtouch: A
Multi-User Touch Technology. In Proceedings of the
14th Annual ACM Symposium on User Interface

Figure 3. Two dialogs with task-based focus
allowing one user to select from a drop-
down menu while a second user can enter
text in a second form.

Figure 4. Two lightblue AdHoc-Focus-
Territories (top one with a open context
menu) allow two users to work with multiple
selected items in parallel, while a third user
at the same time can alter the text of an
individual item (blue highlighted text) in this
collaborative UML Editor.

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1198

Software and Technology - UIST 2001 (Nov. 11-14,
Orlando, FL, USA). ACM Press, New York, NY, USA,
2001. pp. 219-226.

[3] Mirko Fetter and David Bimamisa. TUIOFX—Toolkit
Support for the Development of JavaFX
Applications for Interactive Tabletops. In
Proceedings of the 15th IFIP TC.13 International
Conference on Human-Computer Interaction -
INTERACT 2015 (Sept. 14-18, Bamberg,
Germany). Springer, Heidelberg, Germany, 2015.
pp. 476-479.

[4] Mirko Fetter, Tom Gross and Maxi Hucke.
Supporting Social Protocols in Tabletop Interaction
through Visual Cues. In Proceedings of the
Thirteenth IFIP TC.13 International Conference on
Human-Computer Interaction - INTERACT 2011
(Sept. 5-9, Lisbon, Portugal). Springer, Heidelberg,
2011. pp. 435-442.

[5] Ulrike Kister, Patrick Reipschlaeger, Fabrice Matulic
and Raimund Dachselt. BodyLenses: Embodied
Magic Lenses and Personal Territories for Wall
Displays. In Proceedings of the 2015 International
Conference on Interactive Tabletops & Surfaces -
ITS 2015 (Nov. 15-18, Madeira, Portugal). ACM
Press, New York, NY, USA, 2015. pp. 117-126.

[6] Gierad Laput, Chouchang Yang, Robert Xiao,
Alanson Sample and Chris Harrison. EM-Sense:
Touch Recognition of Uninstrumented, Electrical
and Electromechanical Objects. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software and Technology - UIST 2015 (Oct. 8-11,
Charlotte, NC, USA). ACM Press, New York, NY,
USA, 2015. pp. 157-166.

[7] Nicolai Marquardt, Johannes Kiemer and Saul
Greenberg. What Caused That Touch? Expressive
Interaction with a Surface Through Fiduciary-
tagged Gloves. In Proceedings of the 2010
International Conference on Interactive Tabletops
and Surfaces - ITS 2010 (Nov. 7-10, Saarbrücken,

Germany). ACM Press, New York, NY, USA, 2010.
pp. 139-142.

[8] Microsoft Corporation. The Microsoft Surface 2.0
SDK. http://www.microsoft.com/en-us/pixelsense/
SoftwarePlatform.aspx, 2014. (Last accessed:
5/6/2015).

[9] MultiTouch Ltd. Cornerstone SDK.
http://cornerstone.multitouch.fi/developer_guide,
2015. (Last accessed: 08/01/2016).

[10] Chris North, Tim Dwyer, Bongshin Lee, Danyel
Fisher, Petra Isenberg, George Robertson and Kori
Inkpen. Understanding Multi-touch Manipulation for
Surface Computing. In Proceedings of the IFIP
TC13 International Conference on Human-
Computer Interaction - INTERACT 2009 (Aug. 24-
28, Uppsala, Sweden). Spinger, Berlin/Heidelberg,
Germany, 2009. pp. 236-249.

[11] David Pinelle, Mutasem Barjawi, Miguel Nacenta
and Regan Mandryk. An Evaluation of Coordination
Techniques for Protecting Objects and Territories in
Tabletop Groupware. In Proceedings of the
Conference on Human Factors in Computing
Systems - CHI 2009 (Apr. 4-9, Boston, MA, USA).
ACM Press, New York, NY, USA, 2009. pp. 2129-
2138.

[12] Markus Rader, Clemens Holzmann, Enrico Rukzio
and Julian Seifert. MobiZone: Personalized
Interaction with Multiple Items on Interactive
Surfaces. In Proceedings of the 12th International
Conference on Mobile and Ubiquitous Multimedia -
MUM 2013 (Dec. 2-5, Lulea, Sweden). ACM Press,
New York, NY, USA, 2013. pp. 8:1-8:10.

[13] Stephan Richter, Christian Holz and Patrick
Baudisch. Bootstrapper: Recognizing Tabletop
Users by their Shoes. In Proceedings of the
Conference on Human Factors in Computing
Systems - CHI 2012 (May 5-10, Austin, TX, USA).
ACM Press, New York, NY, USA, 2012. pp. 1249-
1252.

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1199

[14] Volker Roth, Philipp Schmidt and Benjamin
Gueldenring. The IR Ring: Authenticating Users'
Touches on a Multi-touch Display. In Proceedings
of the 23rd Annual ACM Symposium on User
Interface Software and Technology - UIST 2010
(Oct. 3-6, New York, NY, USA). ACM Press, New
York, NY, USA, 2010. pp. 259-262.

[15] Dominik Schmidt. Instantaneous User Identification
for Personalized Interaction on Shared Surfaces.
Lulu Press, Inc., Raleigh, NC, USA, 2012.

[16] Dominik Schmidt, Ming Ki Chong and Hans W
Gellersen. IdLenses: Dynamic Personal Areas on
Shared Surfaces. In Proceedings of the 2010
International Conference on Interactive Tabletops
and Surfaces - ITS 2010 (Nov. 7-10, Saarbrücken,

Germany). ACM Press, New York, NY, USA, 2010.
pp. 131-134.

[17] Stacey D. Scott, M. Sheelagh T Carpendale and
Kori M Inkpen. Territoriality in Collaborative
Tabletop Workspaces. In Proceedings of the 2004
ACM Conference on Computer-Supported
Cooperative Work - CSCW 2004 (Nov. 6-10,
Chicago, IL, USA). ACM Press, New York, NY, USA,
2004. pp. 294-303.

[18] Jason Stewart, Benjamin B. Bederson and Allison
Druin. Single Display Groupware: A Model for Co-
present Collaboration. In Proceedings of the
Conference on Human Factors in Computing
Systems - CHI 1999 (May 15-20, Pittsburgh, PA,
USA). ACM Press, New York, NY, USA, 1999. pp.
286-293.

Late-Breaking Work: Collaborative Technologies #chi4good, CHI 2016, San Jose, CA, USA

1200

