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Abstract. In an optimally integrated HMS (Human Machine System), human 
must understand the machine as well as the machine must understand the hu-
man user. Same principle applies for car NS (Navigation System) which is a 
human-in-the-loop system. An ideally integrated NS knows how, when and 
what navigation information must be provided for the user and create minimal 
interruption for the primary task. To do the same, NS must hold the behavioral 
models of the user for providing the guidance information in an effective way. 
A research framework which uses these principles, is needed to create such 
models as well as for conducting further analysis for the research problem of 
“Giving the driver adequate navigation information with minimal interruption”. 
Until now no such research framework exists and because of that further analy-
sis of the mentioned research problem cannot be conducted. In this paper we 
present the research framework BeaCON: Behavior-and Context-Based Opti-
mal Navigation that enables detailed analysis of this research problem. 

Keywords: Navigation System, HMS, Entity of Interest, Cognitive Load, Ma-
chine Learning, GUI, OEM. 

1 Introduction 

A car navigation system is used to provide navigation information which guides the 
user to reach a destination. Identified research gaps in the area of optimum integration 
of HMS where human and machine learns together which is applicable for modern 
day NS is listed in [1]. NS shows a user the current location on the map and gives 
both audio and visual information for efficient travel from one location to another 
such as the path to be taken which is calculated based on graph theory as well as the 
dynamic information i.e. Traffic [3]. The main research problem of “Giving the driver 
adequate navigation information with minimal interruption” can be divided into fol-
lowing sub problems 

1. Given a set of route and map information, what is an optimal guidance information 
for a user? 
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2. How to find optimal guidance information for a user, provided set of inputs to cre-
ate the same is given? 

3. How to find when, how and what guidance information must be given to the user? 

These research questions must be addressed for achieving the optimal human NS 
integration which is needed to avoid driver distraction [4] created by NS as well as to 
reduce the cognitive load associated with navigation task. This paper introduces Bea-
CON (Behaviour-and Context-Based Optimal Navigation) - a research framework for 
enabling research in the mentioned problems. The driving context and the driver be-
havioral aspects must be considered to decide when, how and what guidance infor-
mation must be given to the user [2]. Natural guidance as well as mobility graph ad-
dresses a very minimal aspect of this problem but with tailored solutions [5]. As an 
initial step to understand the research problems better, [2] conducts a survey to identi-
fy the scenarios where optimal integration between the human user and NS is not 
achieved. The critical survey questions addressed in [2] are regarding 

1. Driver distraction by NS 
2. The extent to which NS understands the user intentions 
3. Optimal integration of NS with the user 

Based on the responses from users, behavioral models are created for these critical 
survey questions [2], which is also used in BeaCON. Since these models are created 
only once and will not change, the same can be called static behavioral models. An 
example of static behavior model created by using the data collected as a part of [2] is 
given in Figure 1. Also BeaCON holds dynamic behavioral models created using 
WEKA machine learning suite [6] for different navigation specific user contexts, 
created per user. Static and dynamic models are created based on decision tree algo-
rithm C4.5 in order to achieve high interpretability. The navigation specific user con-
texts created while conducting experiments using BeaCON is abstracted in a concept 
called entity of interest EOI [2]. EOI can be visualized as the context which influence 
the cognitive load. EOI is currently created for junctions, roundabout and manoeu-
vres. Whenever a new behavior is identified for the user, the dynamic behavioral 
models will be recreated or modified using the machine learning algorithms. These 
models along with other components of BeaCON enables analysis of the research 
problems mentioned above. 

2 Related Work 

For designing intelligent navigation systems, a deeper understanding of their effects 
on human navigation behavior is necessary [7]. The dynamic behavioral models in 
BeaCON incorporate the effects of navigation system on human driver along with 
other characteristics. Classification of driver’s cognitive state to improve the in-
vehicle information by using the drivers cognitive load and driving situation is con-
ducted in [8]. But the classification approach given by [8] is not connecting the driv-
ing situation to the real-world map entities (Maneuvers, Roundabout etc.) as well as to 
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the environmental factors (fog, rain etc.), by making the same also as a part of the 
behavioral models, which is addressed by BeaCON. Also [8] uses support vector 
machine (SVM) based machine learning models and for driver behavioral models 
while BeaCON uses decision tree-based driver behavioral models and conditional 
interconnection between them for enhancing the interpretability of the same [9]. A 
framework for automated driving testable scenarios including failure mitigation strat-
egies is given in [10]. The list of behavioral competency scenarios mentioned in [10] 
for automated driving benchmarking is applicable for human driver-based scenarios 
also. But [10] focuses only on automated driving system as a whole and the optimiza-
tion steps involved in human based and automated agent-based driving scenarios are 
different. 

 

Fig. 1. An Example of a Static Behavioral Model (Created for the extend by which NS under-
standing the user intentions) 

3 BeaCON and its Components 

The research framework BeaCON: Behaviour-and Context-Based Optimal Navigation 
enables to conduct experiments using human-in-the-loop systems, create behavioral 
data and based on that find user cognitive load points, optimize the machine learning 
behavioral models, which are the models used by the system to understand the user. 
The components of BeaCON which also shows the interconnection between different 
components is given in Figure 2. Many steps related to BeaCON i.e. start, stop, create 
cognitive load report etc., are currently automated as well as near real time perfor-
mance is achieved while conducting experiments. BeaCON consists of 5 main com-
ponents which are 
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Fig. 2. BeaCON and its Components 

1. Driving Simulator (DS)  
2. Navigation System (NS) 
3. Cognitive Models for Navigation (CMN) 
4. Simulator for DS 
5. Human User (HU), The description of these components is given below 

3.1 Driving Simulator (DS)  

CARLA open source simulator for autonomous driving research [11] is used in Bea-
CON with extensive adaptations. Since CARLA simulator is primarily designed for 
testing autonomous driving agents, extensive enhancements for existing interfaces are 
done to support the same for human driver interface using Logitech G920 driving 
hardware. CARLA provides extensive configuration support for creating different 
environments for experiments. For example, it is possible to control weather, number 
of pedestrians, state of different objects in the simulator etc. Using these facilities, 
BeaCON supports conducting experiments for different cognitive load environments. 
A DS screen for conducting experiments in environments which induce heavy cogni-
tive load is given in Figure 3. 

3.2 Navigation System (NS) 

A custom-made NS is created and integrated to BeaCON. Currently the image from 
city 1 from CARLA is used for the NS. Navigation system tracks the car position in 
the route as well as highlights the path to be taken by the human user while conduct-
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ing experiments. In the NS different images are used to represent different entities 
like junction, roundabout or a maneuver. Different symbols are used to indicate the 
start and end points of the test path in the map. GUI for NS is shown in Figure 4. 

 

 

Fig. 3. Sample GUI for the DS from CARLA 

The path taken in the map while conducting the experiment is configurable. Once a 
specific path from the map is configured, the same will be highlighted in the map. 
Different entities are represented using different images and the semantic of each 
entity must be informed to the candidate before conducting experiments. Different 
entities and their semantics are given in Table 1. Another functionality of NS is to 
give guidance information for the user based on the current behavior models. 
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Fig. 4. GUI of NS process 

 
Entity Image used for marking 

the entity in the map 
Semantic 

Start point 

 

The location where bench 
marking data collection 
starts 

Destination 

 

Location planned as desti-
nation for experiment. 
Bench marking tool stops 
running once user reaches 
the destination 

Maneuver 

 

Curve in the road, defined 
by shape points in the 
road, which needs atten-
tion from the driver 

Roundabout 

 

Locations with circular 
intersection of the road 
with predefined rules for 
traffic flow, which needs 
attention from the driver 

Junction 

 

Locations where the road 
intersects and typically the 
traffic flow is controlled 
by signals, which needs 
attention from the driver 

Table 1. Images used for different NS entities  

3.3 Cognitive Models for Navigation (CMN) 

CMN holds the static and dynamic behavioral models and using the same the cogni-
tive load values of the user for different driving context (EOI) are generated. The 
models in CMN are created using C4.5 algorithm. The static behavior models are 
created based on a statistical survey from 77 candidates from different countries [2]. 
Dynamic behavior models are created for different entities per user. A basic model for 
different entities is supplied to the system and reconfiguration of the same will be 
conducted at later point. When a new driver behavior is observed the dynamic behav-
ioral models are updated accordingly. Static and dynamic behavior together create the 
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complete behavior model for the user. It is possible to see the result of cognitive load 
calculation for all the questionnaires which was a part of the static analysis. An exam-
ple GUI for one of the static analysis questions for NS creating distraction while driv-
ing is given in Figure 5. 

Similarly, it is possible to view the results for other static behavior models based 
on different input. Different dynamic contexts which occur during the navigation 
which is represented by EOI is represented by different dynamic models. For exam-
ple, a very basic dynamic model created for roundabout is given in Figure 6. User 
behavioral aspects are applied on the basic dynamic models to create user specific 
dynamic models for different EOIs. 
A generic dynamic factor attribute is currently used as a placeholder for different 
traffic flow related factors. It is also possible to see the configuration of different EOI 
for a user in the system. For example, for a selected user the current value of cogni-
tive load for a junction for a context can be identified by a GUI given in Figure 7. 

 

Fig. 5. An Example of interface to static behavior models of BeaCON 
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Fig. 6. Basic dynamic model created for Roundabout  

 

 

Fig. 7. Interface for dynamic model for Junction for a user 
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Similarly, it is possible to identify the cognitive load values for different contexts for 
different users. It is also possible to make the system learn for a different cognitive 
load value for an EOI for a user manually by using the similar GUI. 

3.4 Simulator for DS 

This is used to study, develop as well as to configure different CMN models without 
the use of DS, which enables fast research of the CMN component. It is possible to 
simulate the driving between two configured points in the map as well as to verify the 
CMN behavior during the process since CMN is the component which learns and 
holds the behavior models for different users for different contexts. The simulator for 
DS is currently integrated as a functionality within the NS. 

3.5 Human User (HU) 

Dynamic models are created per user in CMN, so it is possible to conduct independ-
ent incremental experiments per user basis. Dynamic models for each of the EOIs are 
created and stored per user basis and the user identification is based on configuration 
values. 

4 BeaCON Framework Setup 

The components DS, NS, CMN are created as separate process and use inter process 
communication mechanism. The components in BeaCON are loosely coupled. Start 
script starts all the processes as well as initializes the driving simulator hardware set-
up. Preloaded configuration decides the path to be highlighted in the map for conduct-
ing human-in-the-loop experiments. Similarly, automation scripts are used for other 
functionalities related to BeaCON for ease of usability. Separate start scripts are pro-
vided for different driving environments as well as based on the hardware used to run 
BeaCON. For example, it is possible to run BeaCON on a less powerful hardware at 
the cost of rendering quality of DS. The generated report from the experiments con-
tains x and y position, throttle, acceleration, brake, POI information, as well as the 
cognitive load values corresponding to each position. BeaCON set up used is shown 
in Figure 8. It is also possible to configure the responsiveness of steering, brake and 
accelerator using the Logitech gaming software application as well as by controlling 
different parameters in the script used for interfacing the driving simulator hardware. 
For integrating other cities supported by CARLA necessary changes are needed for 
the map configuration which is used for highlighting the test route. 
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Fig. 8. BeaCON Framework Setup 

5 Conducting Human in Loop Experiments 

Presently three different environments are supported for conducting experiments 
which are low cognitive load (50 Pedestrians, clear weather), medium Cognitive Load 
(50 Pedestrians, Soft rain noon) and high Cognitive Load (300 Pedestrians, Hard rain 
sunset). The algorithm for conducting human in loop experiments are given below, 
the steps for conducting experiments using BeaCON is given in Figure 9. 

//Input: Candidate choose and drive between two points on 
the map using a selected configuration 
//Output: Performance evaluation of the driver behavior, 
CMN models are re-created based on new behavior observed 
Step 1: Two points in the map and configuration are se-
lected for conducting experiment 
Step 2: Candidate drives between the selected points, 
collect the behavioral data 
Step 3:  Once user reached the destination, stop collect-
ing behavioral data 
Step 4:  Give the behavioral data input to the custom 
bench marking tool 
Step 5:  Custom bench marking tool creates necessary logs 
for driving behavior 
Step 6: Measure cognitive load at different contexts of 
driving, create report 
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Step 7: Replay the driving behavior to re-verify the 
findings from report with the user 
Step 8: Cognitive load values at different points are 
used to recreate the dynamic behavioral models for EOI  
 

 

Fig. 9. Conducting Experiments in BeaCON 

Individual measurements from the test (steering, brake, throttle values etc.) are getting 
logged in separate files so that the same can be easily used in different data analysis 
tasks. Using a replay mechanism, it is possible to show different scenarios to the can-
didate which occurred during the test and to understand why the candidate has a cer-
tain behavior at certain EOIs. Replay mechanism helps to confirm the assumptions 
regarding the root cause of cognitive load with the user. Once the root cause is identi-
fied the same information can be used for configuring the dynamic models in the 
CMN, so that optimal guidance information for the subsequent tests might be generat-
ed. The following parameters of the guidance information in the navigation system 
varies based on the corresponding cognitive load 

 Distance to the entity at which the guidance information must be triggered before-
hand. 

 The symbols used for indicating the entity in the NS display, different symbols for 
low, medium and high cognitive load contexts 

It is also possible to configure other parameters of the NS in scenarios with different 
cognitive load values. The methodology used for cognitive load measurement, which 
is the step 6 given above in the algorithm for conducting human in loop experiments 
is explained in section 6. The result of different experiments by following the steps 
mentioned in Figure 9 is given in section 7. 



12 
 
 

6 Cognitive Load Measurements 

Steering entropy method [12] with custom enhancements are used for measuring the 
cognitive load. The principle of steering entropy method is that when user can assess 
the actions needed in an effective way, the steering angle motion is in a smoother and 
predictive way. When driver is distracted vehicle deviates from the planned position 
and user must apply more corrective measures. These corrective measures decrease 
steering angle predictability. One of the main advantages of this method is that driver 
is not interrupted by the process of collecting the steering entropy data. The data is 
collected every 150ms which is a justifiable best human response time. The error is 
calculated based on the predicted and observed values as shown in Figure 10. 

 

 

Fig. 10. Steering Entropy Method Visualized. X axis: Increment, Y axis: Steering Angle 

Where configurable time interval (cti) is 150ms by default. The entities corresponding 
to the EOIs are configured in the framework, so the report generated contain the cog-
nitive load for the corresponding EOIs. A configurable radius around the EOIs is used 
for recognizing the entities which created the cognitive load. A custom-made location 
mapping tool is used to map the cognitive load points to the location on the map. 
Cognitive load can be calculated as f(e(n)) + f(u(n)) where u(n) is a user specific val-
ue for the increment n for a user in a context and e(n) is the steering entropy value 
calculated for the increment n. The user specific values mainly use the static models. 
It is also possible to enhance u(n) with behavior models deducted from previous ex-
periments. 
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7 Experimental Results 

Multiple experiments are conducted with candidates of different driving experience 
and different age group. BeaCON enables to calculate the cognitive load for different 
EOIs, different instantaneous speed as well as for different accelerations. Patterns as 
well as root cause deductions are possible from the analysis data. One of the cognitive 
load measurement results from an experiment conduced with a candidate with very 
less driving experience is given in Figure 11, Figure 12, Figure 13. The spikes indi-
cate the locations where the candidate experiences more cognitive load than normal.  

 

 

Fig. 11. Cognitive Load at Different Locations for a candidate with very less driving experience 
for low cognitive load inducing route conditions without route familiarization. Y axis: Cogni-
tive Load Points, X axis: Point of Interest (POI) 

 
 
Fig. 12.     Cognitive Load at Different Locations for a candidate with very less driv-
ing experience for medium cognitive load inducing route conditions, once the candi-
date is familiarized with the route. X axis: Cognitive Load Points, Y axis: Point of 
Interest (POI) 
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Fig. 13. Cognitive Load at Different Locations for a candidate with very less driving experience 
for high cognitive load inducing route conditions, once the candidate is familiarized with the 
route. Y axis: Cognitive Load Points, X axis: Point of Interest (POI) 

Along with instantaneous cognitive load, it is also possible to calculate the cumulated 
value of the cognitive load value introduced by a specific EOI. This is done by aggre-
gating the high cognitive load values observed, where measurement starting from a 
configured point before the user reaches the EOI. It can be observed that the more the 
candidate is familiarized with the route the cognitive load is reduced independent of 
harsh driving conditions as well as independent of less driving experience. 

For example, the variation of cognitive load for different instantaneous speed and 
different accelerations for a candidate with very less driving experience is given in 
Figure 14 and Figure 15 respectively. The high cognitive load is experienced at the 
points with high instantaneous speed when the user drives through different EOIs as 
shown in Figure 14. 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6

Ju
nc

tio
n_

1
Ju

nc
tio

n_
1

Ju
nc

tio
n_

1
Ju

nc
tio

n_
1

Ju
nc

tio
n_

1
Ju

nc
tio

n_
1

M
an

eu
ve

r_
1

M
an

eu
ve

r_
1

M
an

eu
ve

r_
1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Ro
un

da
bo

ut
_1

Cognitive Load at Different Locations

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

-8
.2

69
43

09
63

99
19

09
e-

07
20

.9
60

36
73

93
49

36
5

8.
12

68
16

94
03

07
61

8
17

.1
22

63
35

52
55

12
7

17
.8

12
94

23
14

14
79

5
16

.6
02

28
50

03
66

21
1

16
.6

02
28

50
03

66
21

1
11

.9
84

45
57

76
21

46
6.

56
71

27
84

76
71

50
9

12
.5

48
66

63
81

83
59

38
10

.9
37

47
15

80
50

53
72

-0
.0

00
81

11
56

37
44

02
34

42
0.

04
02

16
74

35
73

54
64

1
0.

04
02

16
74

35
73

54
64

1
10

.3
99

37
92

53
38

74
51

8.
92

60
47

42
05

01
70

9
10

.6
20

06
36

86
37

08
5

9.
90

91
40

11
00

15
87

7.
78

48
43

44
48

24
21

9
2.

38
85

20
35

74
99

14
66

e-
07

6.
81

87
99

47
70

59
65

6e
-0

7
6.

05
79

52
73

78
08

22
8

6.
05

79
52

73
78

08
22

8
0.

00
36

74
76

38
13

61
48

45
4

0.
17

33
04

56
52

50
87

35
7

10
.0

62
92

55
29

47
99

82
17

.4
67

09
27

04
77

29
5

17
.3

08
45

35
59

87
54

9
4.

06
56

03
16

08
58

15
5

-0
.0

00
14

93
32

18
33

54
99

98
7

6.
90

11
20

57
10

01
23

e-
07

1.
62

82
30

04
72

25
95

2
15

.1
46

80
76

70
59

32
62

0.
04

82
21

82
99

06
10

6
5.

94
49

26
62

45
79

23
9e

-0
6

0.
09

64
71

25
30

37
45

27
34

.4
00

39
06

25
-3

.7
31

76
89

89
56

29
88

16
.4

45
01

39
99

93
89

65
15

.2
07

26
33

74
32

86
14

5.
89

56
19

86
92

32
17

8
2.

20
01

32
79

91
48

55
97

0.
36

73
84

44
86

47
49

91
-0

.0
45

65
71

92
17

06
19

97
29

.6
64

30
81

66
50

39
08

Variation of Cognitive Load at Different Instantaneous Speed

Junction_1 Maneuv
er_1

Rounda
bout_1



15 
 
 

Fig. 14. Cognitive Load at Different Instantaneous Forward Speed for a candidate with very 
less driving experience for high cognitive load inducing route conditions without route famil-
iarization. X axis: Cognitive Load Points, Y axis: Instantaneous Forward Speed in m/s 

 

Fig. 15. Cognitive Load at Different Acceleration for a candidate with very less driving experi-
ence for high cognitive load inducing route conditions without route familiarization. X axis: 
Cognitive Load Points, Y axis: Acceleration in m/s^2 

For experienced driver, the cognitive load is less without the route familiarization 
itself for the route which induces low cognitive load. The test conducted with a highly 
experienced drivers are given in Figure 16. 

 

 

Fig. 16. Cognitive Load at Different Locations for a candidate with high driving experience for 
low cognitive load inducing route conditions without route familiarization. Y axis: Cognitive 
Load Points, X axis: Point of Interest (POI) 

But for the route which induces high cognitive load, test conducted with highly expe-
rienced driver shows that the high cognitive load points are occurring as shown in 
Figure 17. 
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Fig. 17. Cognitive Load at Different Locations for a candidate with high driving experience for 
high cognitive load inducing route conditions without route familiarization. Y axis: Cognitive 
Load Points, X axis: Point of Interest (POI) 

 
Analysis of the results deduct some of the information regarding cognitive load of 

the candidates. They are given below 

 The familiarization of the route reduces the cognitive load significantly independ-
ent of the weather conditions for candidate with very less driving experience 

 High speed contributes to high cognitive load points during the test 
 A sudden deceleration is followed by a high cognitive load peak  
 The timely guidance information from NS reduces the cognitive load related to 

maneuvers especially with harsh weather conditions 
 Years of driving experience lead to less cognitive load values for low inducing 

cognitive load environments 
 High cognitive load instances are less during low speed driving 

Similarly, it is possible to conduct other similar experiments and measure the cogni-
tive load values with different combinations in terms of behavioral aspects and tech-
nology aspects of the contexts.  

8 Future Work 

A fusion with other cognitive load measurement techniques can be done and is in 
progress for better analysis of the root cause of cognitive load. For example, steering 
entropy together with eye tracking mechanism can be used to understand the reason 
for cognitive load in more granular way. The contribution of cognitive load at each 
stage of human cognition can be analyzed for identification of the root cause. 

The root cause identification can also make use of interpretable algorithms like 
LIME [13]. This enables more automation of the root cause identification task which 
is currently more manual in nature with the help of replay mechanism. Once the con-
text which is creating the cognitive load is identified from all the collected data, the 
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semantics must be identified for finding the root cause. A model which include hu-
man cognitive constraint is needed for automatic identification of this semantics 
which is shown in Figure 18. Integration of this model, which is in the road map for 
BeaCON enable identification of the root cause of cognitive load with less manual 
work. 

 

Fig. 18. Detailed analysis for cognitive load root cause with reduced manual work 

Mixed reality environment [14] can be integrated to the research framework for 
avoiding the creations of stubs as well as to get more close realistic driving environ-
ments with a 3D view. Also, mixed reality environment will give more provision for 
identification of the root cause, for example identification of where the user is looking 
at a moment of time as well as where the user must be looking ideally based on the 
context. Brake, accelerator and the steering can be from the real environment and the 
other entities of the driving simulator can be presented via virtual environment. The 
NS screen can be projected as a head up display in the virtual environment. 

The behavior of CMN can adopt the rules suggested by [15] for human AI interac-
tion. Especially CMN must update and adapt cautiously as well as to what is the re-
configuration occurred, why the same occurred, and inform the same to the user. Also 
integrating enhanced interpretability should not compromise the human centered na-
ture of the system.  

9 Conclusion 

The research problem “Giving the driver adequate navigation information with mini-
mal interruption” and its relevance is presented. Introduced BeaCON for analyzing 
this research problem as well as the importance of this is justified. Comparison with 
the state of the art is done as well as value addition by BeaCON is presented. The 
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experimental results confirm that the cognitive load of the user can be measured quan-
titatively as well as the reason for cognitive load can be analyzed with the same. The 
roadmap of BeaCON for deducting more granular root cause information which can 
be used for effective reconfiguration of the behavioral models using machine learning 
algorithms are presented. BeaCON enables state of the art research for providing op-
timal guidance information by integrating with best suited machine learning algo-
rithms as well as with modern driving simulators.  

The design of BeaCON is aligned with the research in the area of connected vehi-
cles and infrastructure conducted by many OEMs [16] for future vehicles. This design 
enables to incorporate new features to BeaCON based on connected vehicles and 
infrastructure which lead to more optimal navigation solutions, which can be easily 
adopted by the automotive industry. Also, the result produced by BeaCON can be 
used to enhance the connected vehicles and infrastructure. 
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