
International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 CollaborationBus	Aqua	Editor,	Configuration,	Cooperative	Ubiquitous	Environments,	Editor,	
Sharing	and	Browsing

INTRODUCTION

Cooperative ubiquitous environments reach
beyond single-user interaction and facilitate
cooperation and collaboration among their us-
ers. They leverage interaction between users,
artefacts, and devices, with the goal of soften-
ing or even eliminating the barrier between
local and remote participants. For instance,
a conference room can capture the positions
of present persons and their actions, and then

Lightweight Editing of
Distributed Ubiquitous

Environments:
The CollaborationBus Aqua Editor

Maximilian	Schirmer,	Bauhaus-University	Weimar,	Germany

Tom	Gross,	University	of	Bamberg,	Germany

ABSTRACT
Cooperative	ubiquitous	environments	support	user	interaction	and	cooperative	work	by	adapting	to	the	prevalent	
situation	of	the	present	users.	They	are	typically	complex	and	have	many	environment	components—intercon-
nected	devices	and	software	modules—that	realise	new	interaction	techniques	and	facilitate	collaboration.	
Despite	this	complexity,	users	need	to	be	able	to	easily	adapt	their	environments	to	the	respective	needs	of	
the	workgroups.	In	this	paper,	the	authors	present	the	CollaborationBus	Aqua	editor,	a	sophisticated,	yet	
lightweight	editor	for	configuring	ubiquitous	environments	in	groups.	The	CollaborationBus	Aqua	editor	sim-
plifies	the	configuration	and	offers	advanced	concepts	for	sharing	and	browsing	configurations	among	users.

adapt the computer and projector configuration,
the lighting, and the window shutters; and it
could store these settings to support easy later
resumption of a meeting.

The configuration of a cooperative ubiqui-
tous environment describes the settings of the
environment’s components, as well as the degree
and shape of the individual interaction between
the components. Typically, the task of configur-
ing an environment is realised by programmers
or administrators, because it requires great
insight into the underlying infrastructure and
system architecture, and adequate programming
skills. For instance, the rules for the adaptation DOI: 10.4018/jdst.2011100105

58 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

behaviour of the above conference room are
rather difficult to configure.

The configurations should cover the needs
of the end-users and their workgroups. However,
despite the progress in base technologies such
as data acquisition, processing, and machine
learning, creating and adapting configurations
is still a complex process. In order to facilitate
this process, users need empowerment for end-
user configuration.

In this paper we present CollaborationBus	
Aqua—a sophisticated, yet light-weight editor
for cooperative ubiquitous environments that
supports elegant capturing and storing of
data from the physical as well as electronic
world, visual composition of configurations,
and sharing and browsing of configurations
among groups of configuration authors. In
the next sections we discuss related work. We
then present the concept and implementation of
CollaborationBus	Aqua and report on its user
interaction. We exemplify the user interaction
in a scenario. Finally, we conclude the paper.

END-USER EDITORS FOR
UBIQUITOUS ENVIRONMENTS

There are several end-user editors for editing
and managing configurations of ubiquitous
environments. They provide inspiring concepts
with respect to their enabling middleware (e.g.,
eGadgets), their scheme of the configurations
(e.g., iCAP), and easy user interaction (e.g.,
Jigsaw). As a limiting factor they mostly focus
on individual end-users editing configurations
of single-user settings.

In eGadgets (Mavrommati et al., 2004) a
Gadgetware	Architectural	Style (GAS) frame-
work for interconnecting reusable components
in the form of devices, and a GAS editor for
building custom compositions were developed.
While an enabling middleware manages and
controls all components within the framework,
the editor hides complexity from users. The
editor retains insight to the dataflow to avoid
behaving like a black box for users. By means of
connecting the components’ inputs and outputs,

users generate a range of scenarios consisting
of home appliances that have been adapted to
be accessible through the GAS platform. The
GAS framework models individual components
following a plug-synapse model, where each
component offers a set of abilities and requests
services from other components. Devices in the
physical world are represented as plugs. When
different plugs are instantiated and connected,
they form synapses. This model abstracts and
represents compatible data types and data flows,
and thus effectively helps users understand
which components can be interconnected. In
contrast to the eGadgets editor, Collaboration-
Bus	Aqua focuses on a cooperative composing
process for ubiquitous computing environments,
and offers a sharing and browsing mechanism
with synergy notifications.

Another related editor is the iCAP (Lim &
Dey, 2009; Sohn & Dey, 2003) editor that allows
users to prototype applications and scenarios
for context-aware environments. Following a
pen-based interaction technique, the system’s
components (input and output devices) may be
interconnected to form a conditional rule-based
construct in a user-friendly way. The iCAP editor
allows users to draw their own sketches, which
are used to represent the underlying devices
within the editor environment. These sketches
help to generate a deeper understanding of
the constructed prototype and the interrela-
tions between devices. When components are
connected, their rule-based interaction can be
tested in the editor’s run mode that allows the
simulation of certain input states as well. Similar
to the eGadgets editor, iCAP realises a single-
user concept. In contrast, CollaborationBus	
Aqua aims at leveraging cooperative editing of
ubiquitous computing compositions and offers
synergy notifications.

The Jigsaw editor (Dey & Newberger 2009;
Humble et al., 2003) is a graphical front-end to
a user-oriented framework that supports users in
configuring domestic ubiquitous environments.
Users move dragging components (represented
as jigsaw pieces) from the editor’s list view
onto a canvas to create compositions that in-
terconnect hardware sensors and devices from

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a domestic environment. Differences among
the jigsaw pieces (either output port, or input
port, or both) reflect the connection properties
of the underlying devices and help users to
identify what devices are compatible and can
be connected. The editor provides both visual
and auditory feedback when interactions oc-
cur, and visualises the dataflow to help users
keep track of sensor updates. In contrast to the
Jigsaw editor, CollaborationBus	Aqua relies
on a sophisticated sensor-based ubiquitous
computing event notification infrastructure
with multifarious environment components
and offers powerful mechanisms for filtering
or further processing of gathered data.

The UBI-Designer	toolkit (Vastenburg et al.,
2009) is a web-based graphical editor for sen-
sor networks and infrastructures for ubiquitous
computing. The toolkit represents a high-level
abstraction of the environment’s underlying
components and addresses designers of context-
aware ubiquitous computing environments as
end-users. The toolkit provides access to sensors,
processors, and rules. Sensors are sources of
information in the ubiquitous computing envi-
ronment, gathered by either hardware sensors, or
virtual sensors. Users can explore all available
sensors and their current state, filter sensors ac-
cording to projects, and simulate sensor values.
Processors represent software algorithms for
the low-level interpretation of sensor data. Us-
ers can choose from a selection of pre-defined
processors that implement algorithms such as
pattern recognition. Rules trigger actuators in the
environment, based on data gathered by sensors
and processed by processors. Users create rules
for their ubiquitous computing scenarios with
a rule-editor that abstracts from the complex-
ity of the underlying JESS rule engine. In the
UBI-Designer toolkit, configurations of sensors,
processors, and rules can be saved as Projects.
Each project consists of links to the components
and simplifies their clustering. In contrast to
the UBI-Designer	 toolkit, CollaborationBus	
Aqua provides a rich graphical user interface
with visual programming that allows users to
interact directly with graphical representations
of an environment’s components.

The RePlay system (Newman et al.. 2010)
aims at designers of ubiquitous environments
and enables them to recreate states of the envi-
ronment. By simulating sensor data, replaying
helps to test how a ubiquitous environment
adapts to a prevalent context. Designers and
developers can then adapt the configuration of
the environment according to the simulation re-
sults. RePlay provides a graphical user interface
that is very similar to multi-track audio or video
editors and follows a scenario-based approach.
Gathered sensor data is represented as Clips in
a clip library. Users organise several clips from
different sensors in Episodes. Furthermore,
RePlay supports Transforms that can be applied
on clips. Transforms are processing units that
modify sensor data. Several pre-defined trans-
forms are available, for example the Identity	
Transform for changing the associated user
of sensor data, the Dwell	Transform for creat-
ing delays in sensor data, and the GPS	Noise	
Transform for manipulating GPS sensor data. In
contrast to RePlay, the CollaborationBus	Aqua
editor allows users to configure the intercon-
nections between components of a ubiquitous
environment and provides a sharing mechanism
for configurations.

The Topiary system (Li et al., 2004) is
related to CollaborationBus	Aqua because it
presents an interesting approach for prototyp-
ing ubiquitous, location-enhanced applications.
In Topiary, users model location contexts in a
graphical user interface that consist of enti-
ties, which can be people, places, or things.
People represent users in a location-enhanced
ubiquitous application. Places are defined by
boundaries that users draw on a map. Things
are generic entities that can be associated with
places. Topiary supports two distinct types of
location contexts: presence	 contexts that de-
scribe the spatial relation of persons and things
at places, and proximity	contexts that model the
adjacency of entities. Several location contexts
form a scenario that represents a complex situ-
ation with a number of entities and location
contexts. In contrast to the Topiary system,
CollaborationBus	Aqua goes beyond the pro-
totyping of location-enhanced applications, and

60 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

allows users to configure existing real-world
components of ubiquitous environments.

Fokidou et al. (2008) have presented two
interesting graphical user interface prototypes
for configuring pervasive environments, which
specifically address the requirements of elderly
people (Bee	Prototype) and young adolescents
(Haring’s	 World	 Prototype). The graphical
user interface of the Bee	 Prototype follows
the metaphor of a beehive that abstracts from
the components of the ubiquitous computing
environment. The actual configuration is cre-
ated with the help of wizards and forms. The
Haring’s World Prototype provides a graphical
user interface that leverages creativity. During
the configuration process, users are able to com-
municate with others using the integrated instant
messaging service. The prototype allows users
to discover present artefacts of the ubiquitous
environment, and to define associations between
these artefacts. These associations are realised
as a set of rules. In contrast to these prototypes,
CollaborationBus	Aqua is fully functionally
and has been implemented and deployed as a
graphical desktop application.

COLLABORATIONBUS
AQUA CONCEPT

The requirements for CollaborationBus	Aqua
were from our own experience of developing
cooperative ubiquitous environments for many
years, and lessons learned from related work
such as the examples described in the previous
section. In this section we focus on the follow-
ing three core concepts of CollaborationBus	
Aqua: advanced and easy capturing of data,
composing configurations visually, and sharing
and browsing configurations.

Advanced and Easy
Capturing of Data

The CollaborationBus	Aqua editor includes an
ubiquitous sensor-based platform that distrib-
utes and processes gathered data in the form
of sensor events. The powerful sensor-based
platform Sens-ation (Gross et al., 2006) man-

ages all the capturing, processing, and storing
of the data for the users in the background. The
combination of CollaborationBus	 Aqua and
Sens-ation provides access to the environment
components: sensors that gather data, inference
engines that process gathered data, and actuators
that trigger feedback in the user environment.
Furthermore, Sens-ation offers a broad range
of gateways as interfaces for the easy manage-
ment of components and access to both raw and
processed sensor data.

Sensors are either hardware sensors for
light, movement, temperature, noise; or soft-
ware sensors for applications such as email,
Web browser, and office applications. The
gathered data is used to abstract awareness
information about the users in a cooperative
ubiquitous environment.

Inference engines in the Sens-ation platform
process incoming sensor data. This processing
mechanism allows inferring higher-order infor-
mation from the raw sensor data. Processing re-
sults vary from simple mathematical calculations
(e.g., mean values) up to complex interdependent
processing chains that involve multiple inference
engines’ results. Results from inference engines
are transferred back to the platform as sensor
events, so clients and actuators can access them
through all available gateways.

Actuators realise actions within the envi-
ronment according to the results of the inference
process. Just like sensors, actuator components
are either software applications or hardware
devices. While hardware actuators change
physical settings within the environment,
software actuators typically serve as means of
presenting notifications on a computer monitor.

Composing Configurations
Visually

In CollaborationBus	Aqua users visually com-
pose configurations using the components of
the platform. The editor follows the visual pro-
gramming paradigm that supports configuration
tasks by means of visually appealing graphical
representations (Myers, 1986). These graphi-
cal representations abstract programmatic

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

behaviour, yet still provide an indication of the
underlying technology. The CollaborationBus	
Aqua editor uses distinct graphical elements
for sensors, inference engines, and actuators.

Figure 1 shows our scheme of configura-
tions consisting of one or more sensors, one
or more inference engines, and one or more
actuators. In this exemplary configuration, a
user wants to be notified when the temperature
measured by a temperature sensor has reached
a defined threshold. The user has connected the
sensor’s output to an inference engine’s input,
and the inference engine’s output to an actua-
tor’s input. The inference engine evaluates the
incoming temperature and notifies the actuator.

Environment components are instantiated
by drag-and-drop. Users create connections
among them by drawing lines between two
individual representations. The editor handles
the necessary technical procedures in the back-
ground and provides an indication whether the
established connections are correct on a techni-
cal as well as on a semantic level. The data type
validation mechanism evaluates compatibilities
and notifies users with a warning if they create
connections that form incompatible relation-
ships between components. This avoids that
the composition results in unpredictable behav-
iour within the environment.

Typical examples for incompatibilities
are: connecting two outputs of components
(e.g., connecting the outputs of two sensors
with each other, cf. Figure 2 (a)), or connect-
ing components with incompatible data types
(e.g., connecting a temperature sensor with a
Boolean inference engine Figure 2 (b)). In the
first case, there is no data flow because in the
sensor model of Sens-ation, sensors only out-

put data to the platform. In the second case, a
movement sensor is connected with an inference
engine that implements a logical AND opera-
tor. Clearly, the data types of both components
are not compatible with each other. While the
inference engine awaits Boolean values as input,
the movement sensor only provides numerical
float values as output.

Sharing and Browsing
Configurations

CollaborationBus	Aqua encourages its users
to share, explore, and reuse configurations. In
CollaborationBus	Aqua all configurations are
accessible through a shared repository, which
allows groups of authors to cooperate during the
composing. This repository especially provides
beginners, who do not have experience with
configuring ubiquitous environments, with
an entry point to the system (Mackay, 1990).
With a growing number of configurations in
the repository, beginners get a good sample of
configurations and learn about their coopera-
tive ubiquitous environment and configuration
options therein.

Users can choose between sharing and
privacy—that is, they can either place their
configuration in a shared repository that every
user in a group can access, or save their configu-
ration in a private local file (see Greif & Sarin,
1986 for early findings on sharing and privacy).

The shared repository facilitates synergies
among users. Components instantiated within
the CollaborationBus	Aqua editor refer to con-
crete physical artefacts or software instances.
We define synergies as the similar use of the
same components within the repository of

Figure	1.	Scheme	of	configurations	including	a	sensors,	inference	engine,	and	actuator

62 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

available configurations. When users access
components that are already part of other us-
ers’ configurations, all users involved receive
information about their mutual components. The
notification encourages them to explore each
other’s configuration or contact each other to
discuss synergies.

The underlying mechanism works as fol-
lows (cf. Figure 3): the shared repository of
configurations is a set of components. Any
configuration therein forms a subset of com-
ponents. When the intersection of any number
of configurations produces a set that is not the
empty set, synergies occur.

CollaborationBus Aqua User
Interaction

CollaborationBus	Aqua consists of the Main
Window (cf. Figure 4(a)) and the Inspector (cf.
Figure 4(b)). The Main Window provides four
parts: (aa) the Operation Mode toolbar on the
top end of the window, (ab) the Component
Browser below, (ac) the Composer in the centre
of the window, and (ad) the Statusbar in the
bottom of the window.

Connecting, Editing, and Sharing

The Operation Mode toolbar of the Main
Window of CollaborationBus	Aqua provides
on the left side the access to three basic Opera-
tion Modes: Connecting, Editing, and Sharing.
Switching to one of the modes changes the
content of the Main Window. On the right side
of the Operation Mode toolbar, two additional
buttons allow users to delete components and
to open up the Inspector. In the Connect-
ing Mode, users either enter the appropriate
connection details of the Sens-ation instance
they want to connect to or select one from the
connection history list. Once users establish
a connection, the Editing and Sharing Modes
can be accessed. The Editing Mode is the core
of the application and provides the Component
Browser, the Composer, and the Inspector.
From the Component Browser, components
are instantiated by simply dragging them to
the Composer, where they are transformed into
graph nodes. The Inspector allows exploring
and configuring selected components. In the
Sharing Mode, users browse the repository of
available configurations to learn about their

Figure	2.	Incorrectly	established	Sensor	(a)	and	Sensor-Inference	Engine	connections

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 63

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

environment or to find a template as a starting
point for an editing process.

Exploring and Configuring
Components

The Inspector provides detailed information
and configuration options for components in
the Editing Mode and dynamically changes its
content in relation to selected components. For
example, if users select a sensor component,
the inspector only displays information about it
and its recent events; if they select an inference
engine or actuator component, the Inspector also

provides means of configuring their parameters.
The Inspector is a floating palette window
always located on top of other windows of the
editor. Figure 5 shows the Operation Modes
of the Inspector. Changing between Operation
Modes follows the pattern of the Main Window:
a toolbar with three different toggle buttons
representing the associated modes.

The (a) General Information Mode displays
common data about the selected component
(e.g., its location, owner). This helps users to
identify physical components in their environ-
ment. Furthermore, they provide a common
ground for communication with other users of

Figure	3.	Synergies	in	shared	cooperative	ubiquitous	environment	configurations

Figure	4.	Graphical	user	interface	of	CollaborationBus	Aqua,	with	(a)	the	Main	Window,	and	
(b)	the	Inspector

64 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

these components, because they allow explicit
identification. The (b) Recent Events Mode
provides an overview of the component’s recent
condition, which is mostly useful for sensor
and inference engine components. It displays
either a graphical or a tabular visualisation of
the recent events, according to the component
and its data type. For instance, a temperature
sensor produces numerical event values, which
can be visualised as a temperature graph, while
an inference engine that evaluates a given input
value against a threshold will output Boolean
values, which require a tabular visualisation.
The (c) Synergy Browser Mode allows user to
quickly inspect a component’s synergies
within other configurations in the form of a
tabular configuration listing. In the case of
existing synergies, the Inspector provides two
buttons for either previewing or loading a se-
lected configuration with synergies.

CollaborationBus Aqua
Implementation

The CollaborationBus	Aqua editor is a stand-
alone application implemented in Java 1.5.0_13,
MySQL 5.0.41, and with Apache 2.0.59 on Mac
OS X 10.4.9 and as such was straight-forward
to implement and provides user interaction
concepts that are well known to end-users. It
acts as a client to the Sens-ation sensor platform.

CollaborationBus	 Aqua is comprised of
five core subsystems that implement the main
program logic (cf. Figure 6). The CBAGUI
subsystem is responsible for managing both the
CBABrowser component as well as the CBA-
Graph component that forms the editor’s core.
The CBAGraphHandler subsystem manages
the creation of the visual representations for the
components and devices of the environment.
The CBASensationHandler subsystem commu-
nicates directly with the associated Sens-ation
instance via XML-RPC (Scripting News Inc.,
2010) and distributes the gathered data and its
available components to the CBAGraphHandler.
The management and delegation of actuator com-
ponents is realised by the CBAActuatorHandler
subsystem. It manages all available and instan-
tiated actuators and communicates directly to
Sens-ation via XML-RPC. It provides actuator
parameters for the graphical representations of
actuator components to the CBAGraphHandler.
The CBASharing subsystem directly relates to
the CBAGUI subsystem. It handles access to the
repository of shared configurations by delegat-
ing tasks to a database server. It also processes
the related data for display within the graphical
user interface and implements the synergy find-
ing algorithm.

Subsequently, we explain how the concepts
are implemented with the five subsystems.

Figure	5.	The	operation	modes	of	the	inspector:	(a)	general	information,	(b)	recent	events,	and	
(c)	synergy	browser

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 65

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CollaborationBus	Aqua has been completely
implemented and deployed.

Deployment

We have deployed and tested CollaborationBus	
Aqua in a cooperative ubiquitous environment
in our workgroup. In Figure 7, we introduce a
typical setup. This setup consists of two users
on different workstation computers at two
different buildings of our Cooperative Media
Lab at the Bauhaus-University in Weimar.
Each CBAWorkstation computer (ccml13 and
ccml26 are 27-inch iMacs with 3.06 GHz Intel
C2D, 4 GB of main memory, running Mac OS
X 10.6.4) is equipped with the Collaboration-
Bus	Aqua editor. The workstation computers
attach to the university’s CAN (Campus Area
Network) via a 100 MBit/s Ethernet connection.
All instances of the CollaborationBus	Aqua
editor communicate with a central CBAServer
using XML-RPC and HTTP.

The CBAServer is deployed on our dcml
server, which is a PowerMac G5 with dual 1.8
GHz G5 processors, 1 GB of main memory,
running Mac OS X 10.5.8. The CBAServer
provides the Sens-ation platform (version 5.7)
as well as a MySQL database server (version
5.0.41). The Sens-ation platform manages all
environment components (i.e., sensors, infer-
ence engines, and actuators) of the cooperative
ubiquitous environment. It also delegates the
communication between the components, and

the data exchange between clients. The database
server persistently stores the configuration
repository of the CollaborationBus	Aqua editor.
This repository contains XML representations
of the environment configurations.

In our setup, Sensor	Adapter	Clients and
Actuator	Adapter	Clients are deployed on ad-
ditional workstation computers (ccml24 and
ccml25, also iMac 27-inch C2D), and on an
iPhone 3G (tango). Sensor	Adapter	Clients pro-
vide interfaces for environment sensors and send
gathered sensor data to the Sens-ation platform
of the CBAServer. The Actuator	Adapter	Client
provides the necessary implementation for trig-
gering environment reactions (e.g., displaying
notifications on a computer display, controlling
other computing devices, or manipulating real-
world objects using servo motors).

Data Capturing

CollaborationBus	Aqua requests and obtains
data as a client for the Sens-ation platform.
The editor implementation makes use of the
XML-RPC gateways with synchronous com-
munication. CollaborationBus	 Aqua relies
on synchronous communication, because it
is important to apprise all users of the cur-
rent condition of the environment without
noticeable delay. The CBASensationHandler
subsystem of CollaborationBus	Aqua imple-
ments communication management and ini-
tiation. It encapsulates connections to various

Figure	6.	Component	diagram	of	CollaborationBus	Aqua

66 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Sens-ation platforms and keeps a history. The
CBASensationHandler acts as a surrogate for
the actual Sens-ation connection that is active.
Instead of interacting directly with Sens-ation,
all components of the CollaborationBus	Aqua
system direct their requests to the CBASensa-
tionHandler. The Sens-ation connection com-
ponents make use of the Java XmlRpcClient
implementation as well as the Java WebServer
implementation (both from the corresponding
Apache project framework Apache Software
Foundation, 2010). While the XmlRpcClient
is used to send requests to Sens-ation (e.g., for
acquiring information about available sensors),
the WebServer component listens for notifica-
tions that are sent from Sens-ation when a sensor
event of an observed sensor occurs.

Visual Composing

Visual composing in the CollaborationBus	
Aqua editor is implemented in the CBAGraph-
Handler subsystem and based on a Model-
View-Controller (MVC) pattern. The base of
the visual composing graphical user interface
is an interactive graph interface element, the
CBAGraph. This graph implementation bases on
the Java JGraph (JGraph Ltd, 2009) framework
that provides a graph component for the Java

Swing framework. The CBAGraph component
in the CBAGraphHandler subsystem contains
the CBAGraphModel with the necessary data
for each node in the graph, as well as informa-
tion about relationships between graph nodes.
The CBACellViewFactory, CBACellView, and
CBAVertexRenderer components realise the
visual representations of these graph nodes,
in conjunction with the CBAGraphRouting
component that generates control points for
the rendering of smooth spline-based edges
between the nodes of the graph.

Sharing and Browsing
Configurations

Sharing and browsing configurations is imple-
mented in the CBASharing subsystem. Its
CBASharingDatabase provides an abstraction
layer to the underlying MySQL database and
implements the functional behaviour to save
and load configurations. An identifier string
and the creator of the composition uniquely
identify every composition. Each composition
in the GUI is serialised to an internal XML
representation, which facilitates their internal
handling, and includes all necessary informa-
tion to reload, edit, and share configurations.
The identifier string, the creator, and the XML

Figure	7.	Deployment	diagram	of	a	typical	CollaborationBus	Aqua	setup	in	our	environment

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 67

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

representation of the composition are stored
persistently in the database.

The XML representation for all com-
ponents of a configuration follows a simple
structure (cf. Figure 8). Every component has
a type identifier, a native data type (e.g., Float,
String, Boolean), a location identifier, and a
unique component identifier.

In order to detect synergies in shared con-
figurations, a set of comparisons across all
configurations in the repository is necessary.
The components’ identifiers and their locations
are compared. When both the identifiers and
the locations of two components match, a syn-
ergy is detected. For this purpose, an XML pull
parser sequentially scans all configurations in
the repository and evaluates the contained
components. When a synergy is detected, a
synergy flag is set for the corresponding com-
ponent in the CBAGraphModel. During the
graph rendering cycle, the CBAGraphHandler
triggers the display of a graphical synergy
notification for all graph nodes that are marked
with the synergy flag. The synergy notification
also contains the identifiers of configurations
with synergies, as well as information about
their authors. Users can directly explore and
browse these configurations to find out more
about them.

Scenario

In this section, we present a scenario to illus-
trate a typical editing situation in a cooperative
ubiquitous environment. The scenario involves
two users (Walter and Henry) who are using
CollaborationBus	Aqua for configuring devices
and components in their research facility’s
cooperative ubiquitous environment.

Henry is a research and teaching assistant
and Walter is the room administrator at the
research facility that Tony is working at. It is
Walter’s responsibility to provide technical and
administrative support for a number of confer-
ence rooms within the building.

Walter receives many calls from users of
the conference rooms reporting a broken video
projector. Most of the time he finds the project

system perfectly intact, but the conference room
users simply forgot to turn on the main power
switch. This Switch is necessary to reduce the
standby power output of the room’s devices.
It would simplify Walter’s work a lot if there
were a system that automatically prepared the
conference room for a meeting when a meeting
situation is imminent.

With the help of the CollaborationBus	
Aqua editor, Walter creates a configuration
of sensors, inference engines, and a simple
actuator that controls a power switching relay.
The configuration (cf. Figure 9) consists of a
movement sensor (MovementRoom42) and a
noise sensor (NoiseRoom42). Their gathered
data is used by three inference engines in order
to determine if there are people present in the
conference room. Two of the inference engines
are of the type IEThreshold, which means these
inference engines evaluate incoming sensor
data (in this case noise and movement levels)
against user-specified thresholds. The third
inference engine has the type IELogicAnd. It
realises a logical AND operator for incoming
sensor data. If both IEThreshold inference en-
gines determine that their thresholds have been
reached, the relay board actuator is triggered.
The relay then powers the video projector on.

When Walter placed the actuator compo-
nent in his configuration, he noticed a small
dialogue window that appeared next to the
component, stating that there are other con-
figurations that make use of the power switch-
ing relay actuator in conference room 42 as
well (cf. Figure 10).

Walter clicks the button “Details…”, just
like it is proposed in the dialogue to open the
inspector window. Within the inspector, the
synergy browser mode is activated and presents
a list of other configurations (cf. Figure 11).
These configurations contain components that
are also present in Walter’s configuration.

From the list of configurations in the syn-
ergy browser, Walter learns that a user named
Henry has also created an environment con-
figuration for conference room 42. Henry’s
configuration involves the power switch relay
as well. Walter is curious to learn about Henry’s

68 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

configuration and uses the synergy browser to
load it directly into his CollaborationBus	Aqua
editor application. After exploring the configu-
ration, he goes to see Henry. Henry is happy to
introduce his configuration to Walter and ex-
plains what he did in great detail.

As it turns out, Henry is a regular user of
the conference room and wanted to save the time
required for turning on the main power switch
over and over again every day. Henry organises
all his appointments in a calendar application
program on his computer. All the meetings in
the conference room are included, as well. So
he envisioned a system that would prepare
the conference room just before a scheduled
meeting begins.

Henry’s configuration involved a calendar
sensor that provides events right before an
appointment is due, an inference engine that
evaluates if the appointment is set to take
place in the conference room 42, and the same
relay board as actuator that Walter used in
his configuration.

While they were discussing each other’s
configurations and the synergies they have
created with them, Walter and Henry decide to
work together on an even better configuration
that works both for spontaneous, unscheduled
meetings (like in Walter’s configuration), and
for scheduled meetings as well.

CONCLUSIONS AND
FUTURE WORK

Cooperative ubiquitous environments com-
bine aspects of ubiquitous computing with the
general aim of supporting collaboration and
cooperation in a shared information space, as en-
visioned in the core ideas of computer-supported
cooperative work (Bannon & Schmidt, 1989).
These environments require a lot of intercon-
nected devices and software components in
order to realise new interaction techniques and
facilitate collaboration through them.

We introduced CollaborationBus	Aqua that
provides mechanisms and easy interfaces for ac-
cessing sensors and the event data they capture
as well as for composing configurations. It is
a continuation of our CollaborationBus	editor
(Gross & Marquardt, 2007) with a special focus
on end-users—combining easy handling with
complex compositions. In particular, this editor
is based on a sophisticated interaction concept
that abstracts from the technical complexity of
the cooperative ubiquitous environment and its
components and allows users to focus on the se-
mantics of their configurations. With the sharing
and browsing mechanisms, users can exchange
their configurations—this is particularly helpful
for novice users who can browse existing con-
figurations and do learning by example.

Figure	8.	XML	representation	of	a	sensor	component

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 69

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

As our overview of related end-user edi-
tors for ubiquitous environments has shown,
this particular field of research presents a lot
of interesting challenges that cover several
state-of-the-art topics in ubiquitous computing:
sensor infrastructures and frameworks, natural
and alternative user interaction, recording and
replay of sensor data, use of location data, and
new metaphors for graphical user interfaces.
With CollaborationBus	 Aqua, we introduce
means for cooperative editing of ubiquitous
environments and therefore incorporate aspects
from computer-supported cooperative work
(CSCW). We think that this combination of
ubiquitous computing and concepts of CSCW
presents an important contribution to end-user
editors for ubiquitous environments, and also
for ubiquitous computing in general. Allowing

users to easily share, discuss, and edit their
configurations collaboratively, reduces the
complexity of the configuration process.

Besides its regular deployment in our lab’s
ubiquitous environment, we have successfully
deployed CollaborationBus	Aqua in a media
space setting (Gross et al., 2010). In this scenario,
the editor allowed users of the media space to
define what kind of information they disclose to
others, and to specify a granularity level (rang-
ing from undisclosed to full disclosure with two
levels in-between). The graphical user interface
of the editor, mostly the inspector window, was
modified in this setting in order to provide the
necessary mechanisms for controlling the dis-
closure level of media space sensors.

The CollaborationBus	 Aqua editor cur-
rently supports the management of sensors,

Figure	9.	Walter’s	conference	room	configuration

Figure	10.	A	synergy	was	detected	in	Walter’s	configuration

70 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure	11.	The	synergy	browser	showing	Walter’s	synergy	with	Henry

Figure	12.	Nested	inference	engine	components

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 71

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

inference engines, and actuators. For the future,
users would benefit from including more ca-
pabilities for visualising and simulating sensor
data. While users are presented with a simple
configuration process, the editor in the current
form has limitations concerning the scalability
of the presentation of large configurations. This
is particularly due to the fact that it can only
display flat configurations, where up to ten
components can be seen and manipulated at a
time on a typical 17 inch screen. Introducing a
nesting mechanism for components would allow
users to divide and conquer their bigger con-
figurations into multiple levels of abstraction.

Figure 12 presents a sketch of the proposed
concept for a nesting mechanism in the Collabo-
rationBus	Aqua editor. In this case, the behav-
iour of an XOR inference engine is recreated
with several inference engines that realise the
logical equivalent to XOR, .
In the future, we want to explore suitable user
interface metaphors and concepts that make this
nesting mechanism easy to use and understand-
able for end-users.

Recent research activities in ubiquitous
computing integrate machine learning tech-
niques to provide a very high degree of adapt-
ability to prevalent user contexts (Fogarty et
al., 2005; Patterson et al., 2003; Tapia et al.,
2004). The advantage of this approach is that
the required complexity for configuring ubiq-
uitous environments decreases quickly once
the environment has learned the desired reac-
tions according to user input or user contexts.
We see two interesting approaches for the Col-
laborationBus	Aqua editor in this context: (1)
configuring the machine learning algorithms
with the editor, and (2) suggesting users the
most suitable components based on their current
configuration. In the first approach, Collabo-
rationBus	Aqua could be used to provide an
initial configuration of the ubiquitous environ-
ment, but also to create the configuration and
composition of the machine learning algorithms.
This would allow users to visually compose the
processing chain from data acquisition to clas-
sification. In the second approach, the editor
could be used to propose users the most suitable

components, based on the components they are
currently using in their configuration. This ap-
proach requires an analysis algorithm for detect-
ing typical configurations with respect to
commonly found combinations of components.

ACKNOWLEDGMENTS

The authors would like to thank Christoph
Beckmann, Mirko Fetter, Nicolai Marquardt
and the other members of CML, as well as the
anonymous reviewers for valuable feedback.
Part of the work has been funded by the Federal
Ministry of Transport, Building, and Urban Af-
fairs and by the Project Management Juelich
(TransKoop FKZ 03WWTH018).

REFERENCES

Apache Software Foundation. (2010). About	Apache	
XML-RPC. Retrieved from http://ws.apache.org/
xmlrpc/

Bannon, L. J., & Schmidt, K. (1989, September 13-
15). CSCW: Four characters in search of a context.
In Proceedings	of	the	First	European	Conference	on	
Computer-Supported	Cooperative	Work, Gatwick,
UK (pp. 358-372).

Dey, A. K., & Newberger, A. (2009, April 4-9). Sup-
port for context-aware intelligibility and control. In
Proceedings	of	the	Conference	on	Human	Factors	
in	Computing	Systems, Boston, MA (pp. 859-868).
New York, NY: ACM Press.

Fogarty, J., Hudson, S. E., Akteson, C. G., Avrahami,
D., Forlizzi, J., & Kiesler, S. (2005). Predicting hu-
man interruptibility with sensors. ACM	Transactions	
on	Computer-Human	Interaction, 12(1), 119–146.
doi:10.1145/1057237.1057243

Fokidou, T., Romoudi, E., & Mavrommati, I. (2008,
October 13-15). Designing GUI for the user con-
figuration of pervasive awareness applications. In
Proceedings	of	the	5th	IADIS	International	Confer-
ence	Cognition	and	Exploratory	Learning	in	Digital	
Age, Freiburg, Germany (pp. 29-37).

Greif, I., & Sarin, S. (1986, December 3-5). Data
sharing in group work. In Proceedings	of	the	ACM	
Conference	 on	 Computer-Supported	 Cooperative	
Work, Austin, TX (pp. 175-183). New York, NY:
ACM Press.

72 International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Gross, T., Beckmann, C., & Schirmer, M. (2010,
February 17-19). The PPPSpace: Innovative con-
cepts for permanent capturing, persistent storing,
and parallel processing and distributing events. In
Proceedings	of	 the	Eighteenth	Euromicro	Confer-
ence	on	Parallel,	Distributed,	and	Network-Based	
Processing, Pisa, Italy (pp. 359-366). Washington,
DC: IEEE Computer Society.

Gross, T., Egla, T., & Marquardt, N. (2006). Sensa-
tion: A service-oriented platform for developing
sensor-based infrastructures. International	Journal	
of	Internet	Protocol	Technology, 1(3), 159–167.

Gross, T., & Marquardt, N. (2007, February 7-9).
CollaborationBus: An editor for the easy configu-
ration of ubiquitous computing environments. In
Proceedings	of	the	Fifteenth	Euromicro	Conference	
on	Parallel,	Distributed,	and	Network-Based	Pro-
cessing, Naples, Italy (pp. 307-314). Washington,
DC: IEEE Computer Society.

Humble, J., Crabtree, A., Hemmings, T., Akesson,
K.-P., Koleva, B., Rodden, T., & Hansson, P. (2003,
October 12-15). “Playing with the bits” user-con-
figuration of ubiquitous domestic environments. In
Proceedings	of	the	Fifth	International	Conference	on	
Ubiquitous	Computing, Seattle, WA (pp. 256-263).

JGraph Ltd. (2009). JGraph	homepage. Retrieved
from http://www.jgraph.com

Li, Y., Hong, J. I., & Landay, J. A. (2004, October
24-27). Topiary: A tool for prototyping location-
enhanced applications. In Proceedings	of	the	17th	
Annual	ACM	Symposium	on	User	Interface	Software	
and	Technology, Santa Fe, NM (pp. 217-226). New
York, NY: ACM Press.

Lim, B. Y., & Dey, A. K. (2009, September 30-Oc-
tober 3). Assessing demand for intelligibility in
context-aware applications. In Proceedings	of	 the	
11th	International	Conference	on	Ubiquitous	Com-
puting, Orlando, FL (pp. 195-204). New York, NY:
ACM Press.

Mackay, W. E. (1990, October 7-10). Patterns of
sharing customisable software. In Proceedings	
of	 the	 ACM	 Conference	 on	 Computer-Supported	
Cooperative	Work, Los Angeles, CA (pp. 209-221).
New York, NY: ACM Press.

Myers, B. A. (1986, April 13-17). Visual program-
ming, programming by example, and program
visualisation: A taxonomy. In Proceedings	 of	 the	
SIGCHI	Conference	on	Human	Factors	in	Comput-
ing	Systems, Boston, MA (pp. 59-66). New York,
NY: ACM Press.

Newman, M. W., Ackerman, M. S., Kim, J., Prakash,
A., Hong, Z., Mandel, J., & Dong, T. (2010, October
3-6). Bringing the field into the lab: Supporting
capture and replay of contextual data for design. In
Proceedings	of	the	23nd	Annual	ACM	Symposium	
on	User	Interface	Software	and	Technology, New
York, NY (pp. 105-108). New York, NY: ACM Press.

Patterson, D. J., Liao, L., Fox, D., & Kautz, H.
(2003, October 12-15). Inferring high-level behavior
from low-level sensors. In Proceedings	of	the	Fifth	
International	Conference	on	Ubiquitous	Computing,
Seattle, WA (pp. 73-89).

Scripting News Inc. (2010). XML-RPC	homepage.
Retrieved from http://www.xmlrpc.com/

Sohn, T., & Dey, A. (2003, April 5-10). iCap: An
informal tool for interactive prototyping of context-
aware applications. In Proceedings	 of	 Extended	
Abstracts	of	the	Conference	on	Human	Factors	in	
Computing	Systems, Fort Lauderdale, FL (pp. 974-
975). New York, NY: ACM Press.

Tapia, E. M., Intille, S. S., & Larson, K. (2004, April
18-23). Activity recognition in the home using simple
and ubiquitous sensors. In Proceedings	of	the	Second	
International	Conference	on	Pervasive	Computing,
Vienna, Austria (pp. 158-175).

Vastenburg, M. H., Fjalldal, H., & Mast, C. V. D.
(2009, June 9-13). Ubi-Designer: A web-based
toolkit for configuring and field-testing UbiComp
prototypes. In Proceedings	of	the	2nd	International	
Conference	on	Pervasive	Technologies	Related	 to	
Assistive	 Environments, Corfu, Greece (pp. 1-6).
New York, NY: ACM Press.

International Journal of Distributed Systems and Technologies, 2(4), 57-73, October-December 2011 73

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Maximilian	Schirmer,	MSc	is	a	PhD	student	and	research	and	teaching	assistant	at	the	Mobile	
Media	Group	of	the	Bauhaus-University	Weimar,	Germany.	He	received	a	Master	of	Science	
degree	in	Media	Systems	at	the	Bauhaus-University	in	2010.	His	research	interests	focus	on	
Ubiquitous	Computing,	Mobile	Computing,	Context	Awareness,	and	Energy	Awareness	in	Soft-
ware	Systems.	For	further	information	(including	a	list	of	publications),	please	visit	http://www.
maximilianschirmer.net

Tom	Gross	 is	 full	 professor	 and	 chair	 of	Human-Computer	 Interaction	 at	 the	University	 of	
Bamberg,	Germany.	His	research	interests	are	particularly	in	the	fields	of	Human-Computer	
Interaction,	Computer-Supported	Cooperative	Work,	and	Ubiquitous	Computing.	In	these	areas	
he	has	published	numerous	articles	in	journals,	conference	proceedings,	books	and	book	chap-
ters.	And	he	has	been	teaching	at	various	universities	across	Europe.	He	has	participated	in	and	
coordinated	activities	in	various	national	and	international	research	projects.	He	is	the	official	
representative	of	Germany	in	the	IFIP	Technical	Committee	on	‘Human	Computer	Interaction’	
(TC.13).	He	has	been	conference	co-chair	and	organiser	of	many	 international	conferences	
(e.g.,	program	co-chair	of	the	ACM	GROUP	2010	and	INTERACT	2009	conference).	Further	
information	can	be	found	at:	http://www.tomgross.net.

