Revealing the Invisible: Visualizing the Location and

Event Flow of Distributed Physical Devices
Nicolai Marquardt', Tom Gross®, Sheelagh Carpendale’, Saul Greenberg'

'Dept of Computer Science, University of Calgary
Calgary, AB, CANADA, T2N 1N4

*Faculty of Media, Bauhaus-University Weimar,
99423 Weimar, GERMANY

{nicolai.marquardt, sheelagh, saul.greenberg}@ucalgary.ca, tom.gross@medien.uni-weimar.de

Caretaker’s home
/ ‘,.

ABSTRACT

Distributed physical user interfaces comprise networked
sensors, actuators and other devices attached to a variety of
computers in different locations. Developing such systems
is no easy task. It is hard to track the location and status of
component devices, even harder to understand, validate, test
and debug how events are transmitted between devices, and
hardest yet to see if the overall system behaves correctly.
Our Visual Environment Explorer supports developers of
these systems by visualizing the location and status of
individual and/or aggregate devices. It visualizes the current
event flow between devices as they are received and
transmitted, as well as the event history. Events are
displayable at various levels of detail. The visualization
also shows the activity of applications that use these
physical devices. The tool is highly interactive: developers
can explore system behavior through spatial navigation,
zooming, multiple simultaneous views, event filtering,
details-on-demand, and time-dependent semantic zooming.

Author Keywords
Event flow visualization, prototyping, physical and tangible
interfaces, geographical map overlays, distributed systems.

ACM Classification Keywords
D.2.6 Programming Environments: Programmer work-
bench; H.5.2 User Interfaces: Prototyping

General Terms Human Factors, Design

INTRODUCTION

Physical and tangible user interfaces [8] let people interact
with and benefit from digitally-controlled physical devices
situated in their everyday environment. Motivated by
ubiquitous computing (ubicomp) ideas [25], these systems
comprise devices embedded in homes and workplaces, in a
manner that fuse digital and physical interaction [3,14]. They
usually include a variety of input sensors (e.g., motion, light,
temperature, or distance sensors), input controls (e.g., physical
buttons, dials, or sliders), and output actuators (e.g., displays,
motors, or lights). They form a distributed system when device
inter-operation is computer controlled over a network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

TEI’10, January 24-27, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-60558-841-4/10/01...$10.00.

Elderly person’s home

Observing physical devices by using the
Visual Environment Explorer

Figure 1. Exploring distributed sensors and actuators.

Developers can use various toolkits to prototype such
systems (mostly research, but a few are commercial, e.g.
Phidgets [www.phidgets.com] or Arduino [www.arduino.cc]).
The majority facilitate programming of locally connected
devices [12,13,24], although several recent toolkits allow
similar access to distributed devices [16,21,22]. Such
toolkits radically lower the barrier for developers to use
physical devices in distributed settings. Even so, developing
these systems is no easy task. It is hard to track the location
and status of component devices, even harder to understand,
validate, test and debug how events are transmitted between
devices, and hardest yet to see if the overall system behaves
correctly [15,17].

To address these issues, we developed the Visual
Environment Explorer (VEE). Using VEE, developers can
visualize ongoing activities of the distributed physical
interface infrastructure (e.g., Fig. 1). Specifically, VEE
displays the location and status of individual and/or
aggregate devices. It visualizes the received and transmitted
event flow between devices, as well as the event history.
The visualization also shows the activity of active
applications that control these interconnected physical
devices. Developers can also interactively explore: system
topology through spatial navigation and zooming; system
behavior by examining event transmission/reception at
various levels of detail (including filtering) and with
multiple simultaneous views; and system history through
time-dependent semantic zooming.

£ Visual Environment Explorer

Il Actuator devices
Processing and appliances

[] Couple navigation panning in views
[] Couple zoom in views, difference: |2

ation speed (1000 ms|

3

Visual Environment Explorer

Interactions Lab, University of Caigary. 2003

o] O]
a

TextLCD - Serial# 68140

Aging in Place location preset v‘

£
e

a

)

City name z
)

= 0

(o] z

J b
:

5 = = - =

Figure 2. The VEE user interface: visual exploration of distributed sensors and actuators.

This paper describes VEE. First, we illustrate its basic
workings by showing how VEE supports a person
prototyping a simple distributed physical user interface. We
then explain how developers interact with the various
device and event visualizations offered by VEE.
Subsequent sections describe its implementation,
limitations and future work, and summarize related work in
visualizing ubicomp system operations.

SCENARIO: PROTOTYPING AGING IN PLACE UBICOMP
We illustrate the basic visualization provided by the Visual
Environment Explorer through a scenario, where we show
how Sam (a developer) uses VEE to help prototype a
distributed physical user interface. For clarity, our scenario
uses a deliberately simplified set of interoperating devices.

The idea. Sam is prototyping an aging in place environment
[4,18] containing several devices at two different locations.
The elderly person’s home will contain two motion sensors
that monitor the elder as he moves around the home (Fig. 1,
top left). At the caretaker’s home (e.g., the elderly person’s
adult child), a picture of the elder affixed to a servo motor
will wiggle to reflect the elder’s activity as detected by the
motion sensors. In addition, a two-line LCD display will
summarize the elder’s overall activity during the day (Fig.
1, top right). In this way, the caretaker will maintain remote
awareness of the elder’s current and daily activity; no
activity is cause for concern and follow up.

Setting up the environment. Sam strategically places two
Phidget motion detectors [10] in the elder’s home, which
communicate with a computer running the Shared Phidgets

toolkit [16]. Similarly, Sam affixes the picture frame (using
clay) atop a Phidget servo motor, and places it and a
Phidget text display on the mantle in the caretaker’s home;
both are attached to another computer also running Shared
Phidgets. Under the covers, Shared Phidgets seamlessly
manages access and control of these distributed devices via a
distributed Model-View Controller (AMVC) architecture [16].

Spatially locating devices. Sam starts VEE, which auto-
matically hooks into the Shared Phidget’s dMVC. Sam sees
the four attached devices. He brings up VEE’s geographical
map view as shown in Fig. 2, and uses the map controls
and/or the controls in Fig. 2b to split the view, and to
navigate/zoom into the elder and caretaker’s home locations
(e.g., by searching for a city name, or selecting previously
saved locations). Sam has crafted a floor plan of the elder’s
home, and adds that to the view (Fig. 2¢). He then places
the motion sensors and actuators at these two locations. Fig.
2e is the elder’s home; its two motion sensors represented
as orange circles (Fig. 2¢) on the floor plan. Fig. 2f is the
caretaker’s home: the moving picture frame and the text
display are represented as green circles. The overview map
in Fig. 2a shows a zoomed-out view.

Observing sensor activity. Sam also sees a live overview of
the motion sensors’ activity by observing each of the
orange circles (Fig. 2c). The bar charts at their centers
indicate the recent motion activity in front of the
corresponding sensor. Sam then opens information panels
that reveal more details about each sensor, e.g., the detailed
graph of sensor values in Fig. 2d. This provides valuable

Incoming sensor events

Activity in
the last 30
seconds

Label, name,
serial

Activity in the last

Changes in event flow

6 minutes

Activity in the last
30 seconds

Expanded

Figure 4. Visualizing device status and activity.

each of the four distributed devices. Sam
immediately observes the incoming sensor
events, where each transmitted event is

Figure 3. Observing changes in the event flow.

information for Sam; in this case, he sees the typical ranges
of the sensed values produced by motion, and will use those
ranges to tune the sensitivity of the servo motor’s wiggle.

Control of distributed actuators. For each of the distributed
actuator devices, Sam opens panels that show device status
and controls for altering device properties. These panels
allow both the testing of the correct device functionality
and the configuration or reset of the device. With the panel
in Fig. 2g Sam can change the displayed text on the LCD
by typing the message in the textbox (e.g., ‘High activity
today’). Similarly, Sam can use the slider in Fig. 2h to
change the rotation angle of the servo motor.

Programming the application. Sam now implements his
software. It will estimate the elderly person’s activity from
the sensor values, and use those measures to control the
amount of servo wiggle and content of the text display. He
uses the Microsoft VisualStudio IDE, which has been
augmented to include the Shared Phidgets developer
library. Sam drags and drops four proxy objects into his
project; each represents a particular device type. He then
maps these objects to the four physical devices by selecting
them on the map. The IDE then automatically generates the
basic application framework: the networking of physical
devices to corresponding device proxy objects is done, and
all necessary event handlers are created. In the code view of
the IDE, Sam adds a few lines of code to calculate the
average motion activity in the elderly parent’s home. He
then adds two more lines of code to link the servo position
and the displayed text to this average motion activity value.
All this takes Sam just a few minutes.

Observing configuration and event flow. Sam starts his
application. A representation for this application appears in
the map view — shown as the red circle in Fig. 3b,d. Lines
from this circle show that the application is connected to

displayed as an animated icon (Fig. 3a). In
a similar way, Sam observes control events
that the application sends to change the
servo motor position and the displayed text (Fig. 3c).

While observing the runtime behaviour of his prototype,
Sam notices that the application is generating considerable
network traffic, as it transmits control events for the servo
and display at a very high frequency (Fig. 3c). Sam revisits
the source code and changes the thresholds that determine
how the application responds to incoming sensor values.
Sam then observes the runtime behaviour of this changed
prototype, where he sees that his changes have, in fact,
drastically reduced the number of messages sent to the
display and servo (Fig. 3d,e).

While this scenario illustrated a simple distributed physical
user interface, it nevertheless highlights how VEE supports
various steps in the development, debugging, testing, and
deployment process of such systems.

VISUALIZING DISTRIBUTED PHYSICAL DEVICES

We now dive into greater detail about how VEE visually
represents distributed physical devices, and the interactions
afforded by these representations.

Basic Device Visualization

VEE’s basic visualization of any device contains four key
characteristics: interactive icons, spatial location, views,
and bar charts, as described below.

Interactive icons represent two categories of physical
devices. Sensors (e.g., motion, distance, light, temperature)
are represented as circles with orange background color.
Actuators (e.g., displays, motors, lights) are circles with a
green background.

Spatial location. Each interactive icon is located atop a 3™
party geographic map (VEE uses Microsoft Virtual Earth
[http://dev.live.com/virtualearth/sdk]), or a user-supplied 2D
spatial diagram (e.g., a floor plan). These locations

represent the actual or desired location of the
physical device. Typically, icons are
manually placed atop a location. Alternately,
VEE will automatically place a GPS-enabled
device at its GPS map location.

Views. Interactive icons have three views,

each revealing greater detail (Fig. 4).

o Small views embed a unique identifier
letter (associated with the device) at the
icon’s center. Its orange or green border
indicates the device type (Fig. 4a).

o Normal views wrap a bar chart
(discussed shortly) of the last 30 seconds
of device activity inside the icon’s center
region (Fig. 4b).

e Expanded views include the device type
and its unique hardware serial number in
the icon’s center. The last six minutes of
device activity are shown in an additional
bar chart drawn between the outer bar
chart and the center region (Fig. 4c).

View choice is automatic or manual. When a developer
zooms in or out of a spatial view, the icon’s size increases
or decreases in response; the view type switches at certain
size thresholds. As well, a developer can manually resize an
icon, where again the view type switches accordingly.

Bar chart visualizations provide information about the
recent activity of each device. For sensors, the numeric
values are mapped to the minimum and maximum range of

the bar chart. For actuators, the peaks in the
bar chart represent device activity (e.g.,
changed position of a motor, or changed text
of a display).

Through these four visuals, developers can
quickly identify particular devices by their
labeling and spatial location on a map. As they
zoom into particular regions, they can see
event details about particular devices via the
bar charts. The overview map in Fig. 2a, for
example, shows each device in the small view,
whereas the main window in Fig. 2¢,f uses the
expanded view. By manually enlarging
particular icons (not shown), they can
selectively see greater details about the devices
they are interested in.

Recognizing Device Status and
Characteristics

The icon representation shows not only the
device status, but also reveals specific
characteristics of the device activity. For
example, Fig. 5A represents an actuator device
that is currently connected and available, but
that has no recent activity. Fig. 5B shows a
device that has become unavailable (e.g.,
disconnected cable, turned off, or failure),

where its color is altered to be shaded.
Even so, the past activity of the device
remains visible as values in the circle
bar chart. Figs. 5C-F show how the bar
chart activity pattern provides helpful
information about device
characteristics. Fig. 5C identifies a
sensor with a very high rate of triggered
events. Fig. 5D shows a distinctive
pattern of events triggered at regular
time intervals. Fig. SE illustrates an
activity pattern where its sensor value
oscillates in a distinctive way. Fig. 5F,
on the other hand, shows a sensor with
only infrequent sporadic activity (in
this example a reader hardware
detecting RFID tags).

Details-on-Demand
To view and interact with device details
and device settings, a developer can
open specialized views for each device.
Shared Phidgets provides interface skins that visualize
sensor and actuator devices and that provide controls to
change device settings [16]. VEE secamlessly integrates
these interface skins into its map user interface, where the
developer can select the device and choose one of several
views via the view selection dialog panel (Fig. 6a).
e Control interfaces (Fig. 6b-d) show the current device
properties (e.g., display resolution of a color display, Fig.
6b), show details about device activity (e.g., found RFID

Device

e View selection dialog

B ‘e Color display
RFID reader

Accelerometer

Figure 5. Device visualizations and
activity patterns.

LU Phidget InterfaceKit
Serial: NI

Status:

FIE-

Attached

E]

Data
Model

Control interfaces

----- 2 g i 112 ODE [

[¥]-]]
¢
As1: 0318)

"""""

Ais2 036 000 &

Actvate Atenna
Intemal LED
Exemal LED
[0 Extemal Outout

Tag Found: c934da7333
Time/Date: 81272009 330,52 PH

© Side image fromthe left sde.

O Side mage from the rght sde :

: (d)

4 4

Table views 0

Data Mode! - Phidget TextLCD (88140)

Senstiviy Presets:

Data Type
System Bool

(spow] Key Value
isharedphidgetsitexticd/68140/attached True
Isharedphidgetsitexticd/63140/attacheddate 8/2/2009 3:00:33
isharedphidgetsitexticd/68140/backiight True

System.String
System Bool
Systemint32

Isharedphidgets/texticd/68140/contrast 0
isharedphidgetsitexticd/68140/cursor Faise
Isharedphidgetsitexticd/68140/cursorbiink Faise

) " [GeoLocation] [L.
rf E isharedphidgetsitexticd/68140/metadataiip

136.159.7.55
Isharedphidgetsitexticd/68140/rowscount 2

System.Int32
System.Bool.
System.Bool.
System.String
System.String
System.String
System String
System String
System.Int32
Systemint32
System String
System String

Sensor Value

external
Home

isharedphidgetsitexticd/68140/set/contrast 0
isharedphidgetsitexticd/63140Mext Status message
Isharedphidgetsitexticd/68140/version 2

60 (3 70 75 80 8
Time (Seconds)

Figure 6. Detai]s-on-demand.

tags, Fig. 6¢), and allow changing of device settings (e.g.,
accelerometer sensitivity, Fig. 6d).

o Linear graph views (Fig. 6e) visualize the recent
activities of sensors (e.g., temperature, acceleration) as a
line graph. While this view has some similarity with the
circle bar chart views of the device activity, these linear
graph views are more detailed, have higher resolution,
and span longer time periods.

o Table views (Fig. 6f) list all properties and events of a
device in a table. This is a complete (albeit low-level)
MVC representation of the current device status and its
activities. This view includes sorting and search
functionality to find specific entries in the table.

All views are visualized as floating panels atop the map.
They are anchored to the current map position so that they
move when the map position changes. The developer can
easily rearrange and resize these windows, and collapse the
views (so that only the title is visible) to occupy less space.

VISUALIZING EVENT FLOW AND INTERACTION

We now explain how our tool visualizes the real-time event
flow between devices, and how users can interact with the
visualization to obtain the information they need.

The Runtime Application

As shown in the scenario, VEE displays the application
icon (as a red circle, e.g., 3b,d), and tracks all devices used
by an application. It displays the connections between
device components and the application as a node-link
diagram (e.g., Fig. 3). The red application icon also displays
the incoming and outgoing event activity in a manner
similar to the device visualization, i.e., it shows an
identification label in the centre and a bar chart portraying
the current and past activity of this application (Fig. 3b,d).
Thus the application visualization summarizes the activity
of all its sensors and actuators. For example, developers
can leverage this iconic summary by enlarging the
application icon in an overview map view (leaving device
icons small).

[Fiter active

The Events

VEE animates the event activity of sensors and
actuators as seen by the distributed application,
where incoming and outgoing events of an
application are represented as animated shapes that
move along the connection lines.

Specific shapes are used for encoding different
types of events, and different grey levels are used

= R
Select visible! G L seecin] copper™™

B Boolean events.
W Show” _c vaues
"~ now Talse' values

Revisiting our aging-in-place
application in Fig.3, we see
incoming numeric sensor events
visualized as circles whose
grayscale shading indicates its
current numeric value (Fig 3a).
Because they range from black
to mid-grey, both sensors are
detecting moderate motion. We | String /
also see outgoing events that | Text
change the servo position; here,
the grayscale shading represents | Binary .
the transmitted servo position in | data

degrees (Fig 3c). Similarly, we
see outgoing events — the letter
‘T” — that change the text on the LCD display. Thus
developers not only observe the number of transmitted
events, but also gain some insight into the event data.

B[]

Boolean True False

Qrip

Numeric 0 1000

T

Figure 7. Event encoding.

Filtering

Some applications can be quite complex, with large
numbers of devices, event types, and connections. To
control complexity and visual clutter, developers can apply
filter settings to only visualize events of a specific type.
This reduces the total number of visualized events to only
those of immediate interest to the developer.

In the map view, the developer opens the filter settings
dialog as shown in Fig. 8b. In this example, the developer
has set the filter so that only numeric events whose value
ranges between 0 and 200 are shown on the map in Fig. 8a.
The filter dialog lets developers filter events that fall into
the following categories (or combinations of them):
e FEvent data type. Events can be filtered by their data
type, i.e., Boolean, string, integer, and/or binary values.
e FEvent content. Events can be filtered to those holding
specific values, i.e., true or false Boolean values, integer
values in a specific range, or string events that contain a
given keyword.

Numeric events

Legend

Popyfiterto device visuaizations

to encode values. As shown in Fig. 7 top, boolean
events are rendered as squares, where their
black/white fill represent true/false values.
Numeric events are circles, where grey levels
approximate sensor values ranging from 0 to 1000.
String events are shapes in the form of the letter
‘T°, and binary data events are squares with
rounded corners.

Apply fiter to event visualizations

Figure 8. Applying filter settings to show only specific events.

The filter settings are by default applied globally to all
current elements of the visualization. However, the filter
settings can be selectively applied to the displayed devices,
or to separate connections. Once a filter for any of the
views is activated, an orange label (Fig. 8c top left)
indicates that events in this view are filtered. A checkbox
allows one to quickly activate and deactivate the filter
without opening the filter settings dialog.

Viewing Multiple Maps Simultaneously

As shown earlier in Fig. 2, VEE can display more than one
map view at the same time. When activating the split view
of two maps, the visible part of the second map is the same
as the main view by default. However, each map has
independent navigation and zooming controls; thus one can
navigate and zoom to different areas in each map view.

Multiple map views are very useful for visualizing
distributed ubicomp, for developers can simultaneously
probe different parts of the distributed system at different
levels of detail. We saw this in our scenario that included
two geographically distant homes (e.g., Fig. 2). Multiple
map views can also be applied to the same geographical
location, but in this case different filter settings can be
applied to each view, e.g., one view showing only numeric
events, while another view showing only binary events.

Muting the Geographical Layer

Visualizing the distributed devices at their geographical
location on the map provides useful information about the
context of the device (e.g., affected area of actuators,
sensors nearby, separated areas by walls). At some point,
the fidelity of these maps can distract the person when
observing the details of a particular running application.
VEE allows the developer to set the opacity of the map
layer from any value between 0 and 100%. Fig. 2 shows the
map with 100% opacity, and Figs. 3 and 8 with only 20%
opacity. In the latter cases, the visual focus is on the
distributed devices, their connections, and the animated
events.

Time-dependent Semantic Zoom

VEE lets developers observe device events as they occur in
real-time. This can be overwhelming when large quantities
of events are transmitted at a high frequency. For example,
Fig. 9a illustrates a situation in which a large quantity of
numeric events (circles) is transmitted in a short interval. In
such cases, it is difficult to track inter-device activities,
single events of interest, or to identify errors in the stream
of transmitted events.

To address this issue, the visualization lets the developer
slow down the visualization speed to a specific percentage
of the real time speed. All the events are still visualized on
top of the device connection paths; however, they are
animated at a much slower speed and include more in-depth
information about the actual event (Fig. 9b). We call this
time-dependent ~ semantic zooming. This detailed
information now includes the transmitted data type of the

Figure 9. Time-dependent semantic zoom reveals detailed
information when slowing down the visualization speed.

event, as well as the current value of the event itself (e.g.,
the integer value of numeric sensor events, or the
transmitted text of string events), as illustrated in the close-
up in Fig. 9¢c. This slowed-down visualization facilitates the
tracking of specific events. It even allows the developer to
immediately freeze the visualization in its current state (this
stops all event animations and other visualizations),
affording in-depth analysis of the shown (paused)
visualizations. When time is set back to normal, the events
immediately catch up with real time.

IMPLEMENTATION

We now briefly describe the Visual Environment Explorer
architecture and how we implemented and integrated it into
the existing Shared Phidgets toolkit [16].

The VEE application is implemented primarily in C# (.NET
Framework 3.5), including extensions to the source of
Shared Phidgets toolkit. VEE uses JavaScript to interact
with a geographical map web service, where VEE retrieves
maps from the Microsoft Virtual Earth web service SDK,
and use the Microsoft Research Map Cruncher
[http://research.microsoft.com/mapcruncher/] to integrate
custom overlay maps (Fig. 10a); this tool also allows us to
use higher zoom levels than in the default Virtual Earth web
service. VEE connects to the Shared Phidgets server (Fig.
10b) using the Shared Phidgets kit’s API and programming
library [http://grouplab.cpsc.ucalgary.ca/cookbook/]. VEE then
registers for updates of sensors, actuators, and running
applications. Once a new physical device is connected, the
tool subscribes for all events of this device (Fig. 10c).

All currently running applications of the Shared Phidgets
infrastructure are monitored (Fig. 10d), and the connections
in-between devices are rendered on the map. Events of all
devices are forwarded to the filter (Fig. 10e) and, if they
pass the filter, are forwarded to a local event buffer (Fig.
10f). The buffer then sends the events to the view triggered
by a timer, whose value depends on the visualization speed
set by the developer. Events are then visualized as activity
indicators in the device representations (Fig. 10g), and as
animated events along the links between nodes (Fig. 10h).
User interaction is by direct interaction with the map views
(e.g., navigation, zooming, details-on-demand), and/or by
changing the visualization control settings (Fig. 10i). Here,

Shared
Phidgets
Toolkit

Visualize

\ 4

Detail-on-demand views
and controls

Event data flow

event flow

Application

v

model

—0-

\ 4

Connections
» .y
Ly’ 4 H
q f : ‘ Sensors
L [J P
A -
7 L] L

Observing
sensors, c
actuators, and
activity data

Visualize
sensors and
actuators

Buffer and

Filter e

A\ 4

Actuators

A\ 4

A 4

Custom Map overlays

v

‘ Geographic map and

overlays

a

Virtual Earth webservice

\4

Figure 10. Architecture of the Visual Environment Explorer.

the user interface provides options to change the filter
settings, the visualization speed for time-dependent
semantic zooming, and the settings of the visualized layers.

DISCUSSION AND FUTURE WORK
While VEE is powerful, it could be improved even further
in several ways.

Better control of event history. VEE focuses on visualizing
the actual real-time activity of the devices themselves as
well as the event flow between them. This information,
however, only shows a few minutes of previous device
activity. It should be extended to allow the selection of time
intervals, perhaps via a dynamic query. This would let one
explore past activity of the system, and could in turn
provide information about the long-term device activity.

Alternative layouts. VEE positions devices on the screen by
its simulated or actual physical location. While powerful,
alternative 2D representations could be used to reveal other
aspects of the relations between devices. For example,
devices could be grouped together into clusters depending
on their device properties, characteristics, and activity
patterns. Alternatively, devices that have connection links
with many transmitted events could be located closer to
each other than to those that only sporadically
communicate. Ideally, developers could switch between the
visualizations to match the information they currently need.

Improved links. The connection links in our diagram are
currently rendered as straight lines. Yet these links are bi-
directional connections, which means that incoming and
outgoing events are overlaid atop — and thus sometimes
occlude — each other. This could be remedied easily by
using opposing arcs that separate incoming vs. outgoing
events.

End-user interfaces. Although our visualization is
specifically targeting ubicomp developers’ requirements,
the introduced concepts of the visualization can be also
applied to end-user interfaces. Considering that more and

more distributed electronic devices might be available in
peoples’ homes in the near future, the overview and
reconfiguration of these devices and their connections
would become increasingly important. A user interface that
includes the visualization of the spatial distribution of
devices and their connections, but provides simplified
controls for reconfiguration, would help people to control
and manage these (often invisibly working) ubicomp
applications in their changing everyday environments.

RELATED WORK

Our work relates to visualizations as used in three areas:
ubiquitous computing systems, software programming, and
large-scale sensor networks. We briefly review this work.

Some existing systems visualize device connections. The
Orbital Browser [5] allows configuration of media device
connections and provides visualizations of these
connections. Similarly, the Equator Component Toolkit [6]
provides a display editor for creating configurations of
distributed physical devices and visualizing their
connections. The CollaborationBus editor [11] also allows
the graphical composition of ubicomp applications. VEE
extends this work, where we specifically target
requirements of ubicomp application developers, e.g.,
visualizing event flow between devices, or viewing details
about specific devices.

Graphical view representations of developed software can
facilitate the programming, debugging, and testing process
of applications [1,20]. Developers can visually observe
application behaviour at run-time to recognize unexpected
behaviour [1], detect coordination problems in distributed
multi-agent systems [20], or view the internal processes of
internet routers and network infrastructures [26]. The
Stanford iRoom Event Heap visualization [17] used
visualizations for the debugging of ubicomp applications.
Their Visualizer application provides helpful information to
developers about the activities in the shared data space, so
that developers and users of the systems can detect reasons

for technical breakdowns. In this spirit, VEE also visualizes
run-time behaviour, albeit in a different manner.

Geographical overview visualisations have been developed
to observe large scale distributed sensor network behaviour.
For instance, the SenseWeb system [23] provides views of
aggregated sensor data (e.g., temperature) through the
SensorMap application [19]. GRASS [7] also visualizes
environmental data, for example temperature and rainfall.
These systems are optimized to provide users views of
aggregated and interpreted information, such as average
values of geographical regions, or changes over time.
Another class of software tools focuses on visualizing the
technical properties of these networks: data traffic, load
balance, node attributes, as well as logical links between
nodes. Instances of these systems are EmView [9] and
SpyGlass [2]. While VEE includes analogous visual
representations of sensors, it also displays individual
device/events, actuator devices status, and the detailed
event flow between devices.

SUMMARY AND CONCLUSION

We contributed the Visual Environment Explorer— a
visualization tool that supports developers when proto-
typing ubicomp applications containing distributed devices
such as sensors, controls, and actuators. Using VEE in
combination with Shared Phidgets, developers can rapidly
build such systems, and observe, test, and debug their run-
time distributed behaviour.

In particular, VEE reveals the usually invisible data flow
between the distributed device components. It visualizes
representations for sensors and actuators on a geographical
map layer, reveals the inter-connections between these
devices, and shows the actual data flow of events. This
allows ubicomp developers to observe the status of devices,
as well as the transmission of events and their processing
between devices. Various interaction techniques like detail-
on-demand, filtering, and time-dependent semantic zoom
facilitate the exploration and observation of large device
infrastructures with many transmitted events between the
single devices.

ACKNOWLEDGMENTS
This research is partially funded by the iCORE/NSERC/
SMART Chair in Interactive Technologies, by Alberta
Ingenuity, iCORE, NSERC, and by our industrial sponsor
SMART Technologies Inc. We also thank our reviewers for
their valuable feedback.

REFERENCES

1. Baecker, R., DiGiano, C., and Marcus, A. Software visualization for
debugging. Commun. ACM 40, 4, (1997), 44-54.

2. Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P., and Kroller,
A. SpyGlass: a wireless sensor network visualizer. ACM SIGBED
Review 2, 1 (2005), 1-6.

3. Buxton, W.A.S. Living in Augmented Reality: Ubiquitous Media
and Reactive Environments. In K. Finn, A. Sellen and S. Wilber,
eds., Video Mediated Communication. Lawrence Erlbaum Associates
(1997), 363-384.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Consolvo, S., Roessler, P., and Shelton, B.E. The CareNet Display:
Lessons Learned from an In Home Evaluation of an Ambient
Display. Proc. of UbiComp 2004, Springer (2004), 1-17.
Ducheneaut, N., Smith, T.F., Begole, J.B., Newman, M.W., and
Beckmann, C. The Orbital Browser: Composing Ubicomp Services
Using Only Rotation and Selection. Ext. Abstracts of CHI 2006,
ACM (2006), 321-326.

Egglestone, S.R., Humble, J., Greenhalgh, C., Rodden, T., and
Hampshire, A. The Equator Component Toolkit: Managing Digital
Information Flow in the Home. Adj. Proc. of UIST 2006, ACM
(20006).

Fan, F. and Biagioni, E.S. An approach to data visualization and
interpretation for sensor networks. Proc. of HICSS 2004, IEEE
(2004).

Fitzmaurice, G.W., Ishii, H., and Buxton, W.A.S. Bricks: Laying the
Foundations for Graspable User Interfaces. Proc. of CHI 1995, ACM
(1995), 442-449.

Girod, L., Stathopoulos, T., Ramanathan, N., et al. A system for
simulation, emulation, and deployment of heterogeneous sensor
networks. Proc. of 2nd int. Conf. on Embedded Networked Sensor
Systems, ACM (2004), 201-213.

Greenberg, S. and Fitchett, C. Phidgets: Easy Development of
Physical Interfaces Through Physical Widgets. Proc. of UIST 2001,
ACM (2001), 209-218.

Gross, T. and Marquardt, N. CollaborationBus: An Editor for the
Easy Configuration of Ubiquitous Computing Environments. Proc.
of PDP 2007, IEEE (2007), 307-314.

Hartmann, B., Klemmer, S.R., and Bernstein, M. d. tools: Integrated
prototyping for physical interaction design. IEEE Pervasive
Computing, (2005).

Hudson, S.E. and Mankoff, J. Rapid Construction of Functioning
Physical Interfaces from Cardboard, Thumbtacks, Tin Foil and
Masking Tape. Proc. of UIST 2006, ACM (2006), 289-298.

Ishii, H. and Ullmer, B. Tangible Bits: Towards Seamless Interfaces
Between People, Bits and Atoms. Proc. of CHI 1997, ACM (1997),
234-241.

Klemmer, S.R., Li, J., Lin, J., and Landay, J.A. Papier-Mache:
Toolkit Support for Tangible Input. Proc. of CHI 2004, ACM
(2004), 399-406.

Marquardt, N. and Greenberg, S. Distributed Physical Interfaces
with Shared Phidgets. Proc. of TEI 2007, ACM (2007), 13-20.
Morris, M.R. Visualization for Casual Debugging and System
Awareness in a Ubiquitous Computing Environment. Adj. Proc. of
UbiComp 2004.

Mynatt, E.D., Rowan, J., Jacobs, A., and Craighill, S. Digital Family
Portraits: Supporting Peace of Mind for Extended Family Members.
Proc. of CHI 2001, ACM (2001), 333-340.

Nath, S., Liu, J., and Zhao, F. Challenges in building a portal for
sensors world-wide. First Workshop on World-Sensor-Web: Mobile
Device Centric Sensory Networks and Applications (WSW), (2006).
Ndumu, D.T., Nwana, H.S., Lee, L.C., and Collis, J.C. Visualising
and debugging distributed multi-agent systems. Proc. of the third
annual conf. on Autonomous Agents, ACM (1999), 326-333.

Ringel, M., Tyler, J., Stone, M., Ballagas, R., and Borchers, J. iStuff:
A Scalable Architecture for Lightweight, Wireless Devices for
Ubicomp User Interfaces. Proc. of UbiComp 2002, Springer (2002).
Salber, D., Dey, A.K., and Abowd, G.D. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. Proc. of
CHI 1999, ACM (1999), 434—441.

Santanche, A., Nath, S., Liu, J., Priyantha, B., and Zhao, F.
SenseWeb: Browsing the Physical World in Real Time. Proc. of
IPSN 2006, ACM/IEEE (2006).

Villar, N. and Gellersen, H. A Malleable Control Structure for
Softwired User Interfaces. Proc. of TEI 2007, ACM (2007), 49-56.
Weiser, M. The Computer for the 21st Century. Scientific American
265, (1991), 94.

Wendlandt, D., Casado, M., Tarjan, P., and McKeown, N. The Clack
graphical router: visualizing network software. Proc. of the 2006
ACM Symposium on Sofiware Visualization, ACM (2006), 7-15.

